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An Experiment on the Effects of Using Color to
Visualize Requirements Analysis Tasks

Yesugen Baatartogtokh, Irene Foster, Alicia M. Grubb
Department of Computer Science

Smith College, Northampton, MA, USA
amgrubb@smith.edu

Abstract—Recent approaches have investigated assisting users
in making early trade-off decisions when the future evolution
of project elements is uncertain. These approaches have demon-
strated promise in their analytical capabilities; yet, stakeholders
have expressed concerns about the readability of the models
and resulting analysis, which builds upon Tropos. Tropos is
based on formal semantics enabling automated analysis; however,
this creates a problem of interpreting evidence pairs. The aim
of our broader research project is to improve the process of
model comprehension and decision making by improving how
analysts interpret and make decisions. We extend and evaluate
a prior approach, called EVO, which uses color to visualize
evidence pairs. In this scientific evaluation paper, we explore the
effectiveness and usability of EVO. We conduct an experiment
(n = 32) to measure any effect of using colors to represent
evidence pairs. We find that with minimal training, untrained
modelers were able to use the color visualization for decision
making. The visualization significantly improves the speed of
model comprehension and users found it helpful.

I. INTRODUCTION

Goal-oriented requirements engineering (GORE) aims to
assist individuals to make decisions about their projects. To do
so, analysts create models consisting of actors and intentions
(e.g., goals, tasks), as well as connections between them. These
models can then be evaluated for a given scenario by placing
a label on each intention of interest to the user. In the domain
of qualitative evaluations of goal models, there are multiple
methods for evaluating intentions. For example, iStar and GRL
use visual labels (e.g., checkmarks and Xs), while Tropos uses
evidence pairs (e.g., (F , P )). In comparing these approaches,
the visual labels in iStar are more understandable to end-users
but lack formal semantics, while the evidence pairs in Tropos
allow for automation but are hard for users to understand.

This tension between model comprehension and automated
analysis is further exacerbated by evaluating models over
time [1], [2] and with families of models [3], where users
evaluate collections of models. Given the potential for au-
tomating analysis of goal models [4] and connecting them
with downstream activities [5], the broader aim of this research
program is to improve the cognitive effectiveness [6] of Tropos
evidence pairs, making them more accessible to end-users.

The comprehensibility of Tropos models has already been
investigated in the literature. Hadar et al. compared Tropos
and Use Case models and found that Tropos models seem
to be more comprehensible with respect to some requirements
analysis tasks, although Tropos models were found to be more

time consuming [7]. In a replication of Hadar et al.’s work,
Siqueira found no difference in model comprehensibility and
effort between Tropos and Use Case models, when those
models have equivalent complexity [8]. While an important
foundation, this work is tangential to our investigation because
we are interested in improving the comprehensibility of Tropos
relative to itself, rather than comparing it to other approaches.

In prior work, Grubb and Chechik developed automated
analysis techniques for Tropos models with evolutionary infor-
mation [9]. Building on this framework and the BloomingLeaf
tool, Varnum et al. proposed using colors to assist users
in interpreting evidence pairs in Tropos, which they called
EVO (Evaluation Visualization Overlay) [10]. Varnum et al.
completed a preliminary evaluation with an example but did
not validate this approach with users [10]. Prior work suggests
that color can help individuals interpret certain graph types
faster [11], but should be used as a secondary encoding [6].

Contributions. We investigate to what extent, if any, using
EVO affects how individuals understand and make decisions
about goal models with timing information, using Tropos evi-
dence pairs. We report on an IRB-approved between-subjects
experiment conducted with 32 undergraduate students. We aim
to answer four research questions:
RQ0 Do modelers across treatment groups perform similarly

on basic goal modeling and simulation tasks?
RQ1 To what extent are subjects able to learn EVO, and then

use EVO to answer goal modeling questions?
RQ2 How does EVO compare with the control in terms of

time and subjects’ perceptions?
RQ3 How do subjects rate the study experience/instrument?
We found that with minimal prior training in goal modeling,
subjects were able to learn and use the EVO extension to
make decisions. We found no evidence that EVO altered the
quality of understanding or decision making, either positively
or negatively. However, we found that EVO significantly
decreased the time required to make decisions. Finally, the
subjects responded positively to EVO and the study protocol.

Organization. The remainder of the paper is organized as
follows. Sect. II reviews goal modeling and the EVO approach.
Sect. III describes our study methodology. We report on the
results of our study in Sect. IV, and discuss lessons learned
and validity in Sect. V. Finally, we review related work in
Sect. VI and conclude in Sect. VII.
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Fig. 1: Employment Model & Goal Modeling Legend

II. BACKGROUND

In this section, we review the goal modeling notation and
visualization overlay used in this study.

A. Goal Model Notation

We use the Employee model shown in Fig. 1 to illustrate
our notation. A goal model consists of actors, intentions, and
links. Intentions describe the intentionality of each actor and
consist of four types: goals, soft goals, tasks, and resources.
For example, Fig. 1 contains one actor, named Employee, and
nine intentions that describe the Employee’s motivations.

Intentions can be decomposed or contribute to the fulfill-
ment of one another via links, forming one or more graphs
of nodes in the model. Decomposition links (i.e., and, or)
decompose an intention into subsequent or child nodes. An in-
tention with an and-decomposition requires all of its children
to be fulfilled, while an or-decomposition requires only one
to be fulfilled. In Fig. 1, the Employee’s only goal is to Have
Employment, which is or-decomposed into two alternate tasks
Work from Home and Work in Office. Contribution links (e.g., +,
-, ++S, –S) indicate that an intention has influence on another
intention. For example, Work in Office (see Fig. 1) propagates
all evidence to Make Work Connections via a ++ link, while
the - link between Work in Office and Spend Time with Family
negates and propagates partial evidence of fulfillment.

The fulfillment of an intention is evaluated qualitatively
using an evidence pair (s, d), which separates evidence for
and against the fulfillment of the intention. Both s and d
consist of one of three values: F represents full evidence,
P represents partial evidence, and ⊥ represents no evidence,
where ⊥ ≤ P ≤ F . Thus, goals can have one of five initial
values: [Fully] Satisfied (F,⊥), Partially Satisfied (P,⊥),
Partially Denied (⊥,P), [Fully] Denied (⊥,F), and None
(⊥,⊥); as well as four conflicting values that may result from
propagation: (F,F), (F,P), (P,F), and (P,P). For clarity, we
list these evidence pairs in Fig. 2. In Fig. 1, the task Prepare
and Pack Lunch is assigned the value Denied (⊥,F) because
the actor Employee has not yet completed the task.

Fig. 2: Evidence pairs overlayed with EVO color assignments.

Fig. 3: EVO modes showing only Spend Time with Family.

B. Simulating Models over Time

We use the Evolving Intentions framework [9] to simulate
how a model’s fulfillment changes over time. The framework
allows users to specify one or more stepwise functions (called
User-Defined (UD) functions) describing how the evidence
pair assignment for an intention changes over time. Over any
time interval, the valuation of an intention can Increase (I),
Decrease (D), remain Constant (C), or be random or Stochas-
tic (R). In Fig. 1, the resource Time remains CONSTANT with
the valuation of Satisfied (F,⊥) over time. The MP label
on Prepare and Pack Lunch indicates a Monotonic Positive
function, meaning that the valuation will become more fulfilled
until it is fully satisfied and then it will remain constant with
that value. Three other functions that appear in this paper
are: (Denied-Satisfied (DS)) the satisfaction evaluation remains
Denied (⊥,F) until t and then remains Satisfied (F,⊥);
(Stochastic-Constant (RC)) changes in satisfaction evaluation
are stochastic or random until t and then remains constant
with a given evidence pair; and (Constant-Stochastic (CR))
the satisfaction evaluation remains constant at a given evidence
pair until t and then changes in evaluation are stochastic.

After a path has been simulated, all of the intentions in
the model are assigned an evidence pair label for each time
point. Intentions that are not assigned evolving functions
receive their valuations via propagation. Thus, a contribution
of the framework is to allow users to make trade-off decisions
about the future states of the model by stepping through each
time point in a simulation and reviewing the evidence pair
assignments of each intention.

C. EVO: Evaluation Visualization Overlay

As briefly mentioned in Sect. I, Varnum et al. introduced
the Evaluation Visualization Overlay (EVO) [10]. EVO was
designed to assist users in understanding evidence pairs. Each
evidence pair (s, d) label is assigned a color (see legend in
Fig. 2), where blue denotes evidence for (i.e., the s value),
red denotes evidence against (i.e., the d value), and purple
denotes conflicting evidence. The more saturated (or darker)
the color shade, the stronger the evidence (i.e., F is darker
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than P ). Observe that (F,F) is a very dark shade of purple,
whereas (P,P) is a lighter shade of purple. For (P,F) there is
both blue and red present, making it purple, but because there
is more evidence for denial, it is more red-purple, with the
inverse being true for (F,P). During modeling activities, when
EVO is enabled the color of each intention corresponds to
any initial assignment, while unassigned intentions retain their
original color (see legend in Fig. 1). This provides an overall
visualization of the model’s initial state. For example, Fig. 4
gives the initial state of the Summer model (see Sect. III-B
for details). In Fig. 4, Have Summer Activity is colored dark
red because it has been assigned the (⊥,F) label.

The main contribution of EVO is to assist users in evaluating
evidence pair assignments across a simulation path. Within the
Evolving Intentions framework introduced above, it is difficult
for a user to remember all of the different valuations of each
intention at each time point, much less synthesize them all
together to act upon the given information. EVO provides three
modes to visualize simulations: State, Time, and Percent. To
introduce these modes, we consider only the Spend Time with
Family intention from Fig. 1. State mode shows the current
time point of the model, with the background of each intention
colored based on their assigned evidence pair. Fig. 3 shows
the color and evidence pair assignments for Spend Time with
Family at time points 0–4. Time mode shows the valuations
over the entire path in one view. For example, in Fig. 3,
each of the stripes on Spend Time with Family represents the
colors of each state shown above. Finally, Percent mode colors
by overall evaluation percentages, making the background
of each intention colored with the percentage of states in
the simulation where the intention has each evidence pair
assignment. The width of each colored stripe corresponds to
the percentage of time points that it holds a specific evidence
pair, ordered based on level of fulfillment.

III. METHODOLOGY

In this section, we describe our methodology for conducting
this study, which was approved by our institutional review
board (IRB). Our supplemental materials are available online1.

A. Experiment Design

Our primary objective in designing this experiment was to
measure the effects of EVO. The original EVO proposal was
implemented as an extension to BloomingLeaf [12]. We did
not intend to evaluate the usability of BloomingLeaf; instead,
we wanted to test EVO in isolation without the confounding
variables of tooling, making our study tool agnostic. Addition-
ally, we wanted to collect timing information in an accurate
way. Thus, we designed the study instrument to be completed
via our institution’s browser-based Qualtrics® XM platform.
We used the BloomingLeaf git repository [12] only for the
purpose of creating our study materials and models.

In designing this experiment, our main consideration was
ensuring that we measured the appropriate elements, and

1See https://doi.org/10.35482/csc.002.2023 for supplement.

TABLE I: Study Models

Evolving
Models Figure Actors Intentions Links Functions
Course n/a 2 9 10 2
Employment Fig. 1 1 9 10 3
Summer Fig. 4 1 14 17 8
Bike Fig. 5 1 16 20 7

controlled for the risks of variability between subjects’ tasks,
subjects’ natural performance, and any learning, fatigue, or
carryover effects (see Sect. V-C). We chose a nested 2x2
design [13], with random treatment group assignment. To
measure the impacts of using EVO, we compared measure-
ments of subjects analyzing a model with and without having
access to EVO, using two different models. To mitigate
any learning effects, we varied the EVO training order. We
took measurements of subjects’ correctness when answering
questions, labeled as score, and how long it took subjects to
answer these questions. Thus, our dependent variables were
score and time. Previous investigations have demonstrated that
task equivalency is an important factor in analyzing model
comprehensibility [8]. We designed our questions to be similar
but not identical. To understand any effects that may result
from model variation, we test two models in our design.

We explored conducting the study as either a between-
or within-subjects comparison. Ideally, our study would be
analyzed in-subjects. This would control for natural variations
in individual performance, model variability, and EVO order-
ing. Yet, analyzing this design requires the use of ANOVA,
for which we were unsure we could get sufficient subjects.
Instead, we planned our analysis to be performed between-
subjects, but this has the downside of not being able to control
for individual subject variability.

B. Materials: Models and Videos

In this study, we used four models: the Employment model
(see Fig. 1), the Summer model (see Fig. 4), the Bike model
(Fig. 5), and the Course model (not shown for space consider-
ations, see online1). We list these models and their associated
metrics in Tbl. I. The Course model describes the process
of a student (and their advisor) trying to decide whether the
student should take a fun and interesting or practical and
unexciting elective in the next semester. In Sect. II-A, we
describe the Employment model (see Fig. 1) to introduce
goal model syntax. The model describes an employee, who
is debating between working from home or working in an
office, with the top-level goal of Have Employment.

In the Summer model (see Fig. 4), the actor Joy wants to
have a summer activity, with choices between tasks Join Book
Club, Join Community Center, and Join Soccer Team. These
tasks are and-decomposed into sets of tasks that must be
satisfied. In the Bike model shown in Fig. 5, the City actor
wants to construct bike lanes, with the top-level goal Have
Bike Lanes, for which they must have satisfied both sub-goals
Have Design Plans and Have Build Plans. These two goals are
or-decomposed into tasks they must choose from.
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Fig. 4: Summer Model

Fig. 5: Bike Model

Subjects were tested on their ability to answer questions
about the Bike and Summer models (see Tbl. IV for list of
questions). We created both an EVO and control version of all
models. These models as well as their simulations are available
online1. While the Bike model has more intentions and links,
the evolving functions are simpler than the Summer model.

Our study consisted of three training videos (transcripts
available online1): (i) Goal Models in Tropos (VidGM) reviews
goal modeling and explains Tropos evidence pairs and links.
(ii) Introduction to Simulation Over Time (VidSim) introduces
function types and evolving intentions, describing what it
means to simulate a model over time. (iii) EVO (VidEVO)
introduces the EVO color scheme for evidence pairs and goes
over its three possible modes: State, Time, and Percent.

C. Procedure: Conducting the Experiment

Tbl. II lists the steps in our protocol for each treatment
group. Parts 0, 1, and 5 are common across all subjects. In
Part 0, we obtained informed consent from all subjects and had
them rate their previous experience with goal modeling. In this
step, we also had them complete a short (seven question) color
deficiency test to ensure subjects met the inclusion criteria
(see Sect. III-D). In Part 1, subjects completed two training
modules, one introducing goal modeling more generally using
VidGM, and the other introducing the minimal required subset

TABLE II: Study Protocol

Treatment Groups
EVO: Bike EVO: Summer

Part EBk-XSm XSm-EBk ESm-XBk XBk-ESm
0 Consent, Color Test, and Subject Background
1 Training: Goal Modeling and Simulation
2 Training:

EVO
Summer
Control

Training:
EVO

Bike
Control

3 Bike EVO Training:
EVO

Summer
EVO

Training:
EVO

4 Summer
Control

Bike EVO Bike
Control

Summer
EVO

5 Debrief

TABLE III: Subjects’ Reported Familiarity with Topics

Subject Median Familiarity (0: None, 10: Complete)
Group English RE iStar Tropos GRL
EBk-XSm 10 0.5 2.5 0 0
XSm-EBk 10 0.5 0 0 0
ESm-XBk 10 1 0 0 0
XBk-ESm 10 0.5 0 0 0

of the Evolving Intentions framework (using VidSim). We
used the Course and Employment models in Part 1 and in
the ‘Training: EVO’ module in Parts 2 and 3 (see Tbl. II).
Specifically, the Course model was used as part of our training
materials, including videos, to introduce new concepts. After
each module, subjects were asked questions to test their
understanding using the Employment model. These questions
allowed us to establish a baseline for comparison of subjects’
performance on goal model tasks. In Part 5, we debriefed and
remunerated subjects, having them reflect on the study.

Parts 2–4 (see Tbl. II) varied based on the subjects’ ran-
domly assigned treatment group. All subjects completed the
‘Training: EVO’ module and answered questions about the
Bike and Summer models (see Tbl. IV) after examining each
model. What varied is which model (i.e., Bike or Summer)
they answered questions about using EVO and whether they
answered questions about a model before or after completing
the EVO training. This allowed us to control for both variations
in the models and a learning effect.

D. Experimental Conditions and Subject Information

We conducted the experiment in early 2023. All subjects
were required to be proficient in English, be enrolled at Smith
College having previously passed ‘Programming With Data
Structures’, and be known to not have a color vision deficiency
(i.e., colorblindness), as well as apply to participate in the
study. Subjects were excluded if they had a conflict of interest
with our lab. Thus, we recruited subjects through a department
mailing list and flyers were posted in the science buildings on
campus, see supplement1 for details.

Once subjects applied for the study, they were brought into
the lab to complete the one-hour study in-person on our lab
machine in a soundproof room. Since the subjects were not
required to have training in goal modeling, one author was on
hand to answer any questions after each training module.

We recruited 32 undergraduate students to participate, eight
per treatment group. All subjects achieved a perfect score on
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Fig. 6: Scores (counts) and timing data (in seconds) for the
goal modeling and simulation training. Maximum TNG score
was 8, while maximum TNS score was 6.

the color vision test. During Part 0 of our protocol (see Tbl. II),
we asked subjects to rate their familiarity with written English,
requirements engineering (RE), and three GORE languages
(where 0 is no familiarity and 10 is complete familiarity).
Tbl. III reports the median familiarity score for each treat-
ment group. Subjects rated themselves highly with respect to
English. One subject in each of XSm-EBk, ESm-XBk, and
XBk-ESm rated their familiarity with English between six
and nine, while all other subjects selected ten. The median
scores for RE and iStar were low but non-zero. It is likely
that some of our participants completed our course in software
engineering, and while RE coverage varies each semester, iStar
has been covered recently. We did not expect subjects to have
any familiarity with Tropos or GRL but included them for
completeness. Subjects were randomly assigned to treatment
groups before demographic information was collected, so we
were unable to use this information in group assignments.

IV. RESULTS

In this section, we answer our research questions using data
collected in our investigation.

A. RQ0: Establishing a Baseline for Comparison

We begin by answering RQ0: Do modelers across treat-
ment groups perform similarly on basic goal modeling and
simulation tasks? All data collected during Part 1 of our
protocol (see Tbl. II) was used to establish a baseline both to
compare between subjects and evaluate to what extent subjects
understood the training.

First, subjects watched VidGM video and answered eight
questions about goal modeling (TNG), and then they watched
VidSim and answered six questions (plus one qualitative
question) about simulating models over time (TNS), see sup-
plement1 for questions. All answers were scored as correct or
incorrect. Fig. 6 reports box plots for subjects’ training time,
test time, and test scores (from left to right), for both the goal
modeling and simulation training. Each box plot is sorted by
treatment group and times are reported in seconds. For the
goal model training (see first row in Fig. 6), most subjects

Fig. 7: Timing data (in seconds) for the
EVO training.

TABLE V:
EVO training score
frequencies, grouped
by order (i.e., Part 2 or
Part 3, see Tbl. II).

EVO Score Freq.
Train. 0-4 5 6
Part 2 0 4 12
Part 3 0 3 13

spent 8–9.5 minutes on the initial training (i.e., rounded first
to third quantile), which included a 7.5-minute video), most
subjects took 3–5 minutes to answer the TNG questions,
achieving scores between 6–8. For the simulation training (see
second row), subjects completed the initial training (including
a 5-minute video) in 5–6.5 minutes. They then answered the
TNS questions in 5–6.5 minutes, achieving scores between
4–6. From the box plots, we cannot observe any meaningful
difference between treatment groups. For completeness, we
used the Kruskal-Wallis Rank Sum (KWRS) test [14] to test for
any variability between treatment groups. Our null hypothesis
was that the treatment groups performed equally well on the
questions, both in terms of score and time. We failed to reject
our null hypothesis (p ≮ 0.1), meaning that we could not
detect a difference between the treatment groups.

Additionally, subjects were asked to document any ques-
tions they had after reviewing the training videos (and as-
sociated documents). For the goal modeling training (TNG),
eighteen subjects left a substantive question. These questions
were most commonly about the evidence pairs, differences
in contribution link types, and specific choices made by the
modeler of the example. There were two questions about the
differences between the training materials and iStar. For the
simulation training, fourteen subjects asked a question. The
vast majority of them were about choice and usage of evolving
functions. Specifically, to explain the behavior of an intention
without an assigned evolving function. Anecdotally, based on
our experience teaching goal modeling, these questions are
consistent with those asked in the classroom. Since subjects
were not trained modelers, researchers answered subjects’
questions before proceeding to the next part of the study.

We conclude that subjects performed similarly on basic goal
modeling and simulation tasks.

B. RQ1: Subjects’ Use of EVO

Second, we consider RQ1: To what extent are subjects able
to learn EVO, and then use EVO to answer goal modeling
questions? Given our RQ0 results, we investigate this question
between-subjects using a nested 2x2 design. In Parts 2–4 (see
Tbl. II), each subject completed the EVO Training module and
answered questions about the Bike and Summer models (see
Tbl. IV), one using the EVO feature and one without. Thus,
we compare the EVO training module and the results of each
model separately. We divide RQ1 into two sub-questions: (a)
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TABLE IV: Summer and Bike Questions

Page Num Summer Model Bike Model
P1 Q1 What is the initial satisfaction value of “Pass Tryouts”? What is the initial satisfaction value of “Prevent Dooring Incident”?
P1 Q2 What is the initial satisfaction value of “Exercise”? What is the initial satisfaction value of “Bike Lane Usage”?
P1 Q3 Is the initial state of the model more satisfied, denied, or conflicted? Is the initial state of the model more satisfied, denied, or conflicted?
P2 Q4 For each of the elements listed below, how many times over the

simulation does the element become Fully Satisfied? (a) Have
Summer Activity, (b) Pass Tryouts, (c) Exercise

For each of the elements listed below, how many times over the
simulation does the element become Fully Satisfied? (a) Bike Lane
Curbside, (b) Temporary Construction Plan, (c) Public Support

P2 Q5 How does “Join Soccer Team” generally evolve over the simula-
tion?

How does “Public Support” generally evolve over the simulation?

P2 Q6 For each of the following satisfaction values, at which time point
in the simulation do the most number of elements have the value.
Note: In the event of a tie, choose the later time point (higher
number). (a) Fully Satisfied, (b) Fully Denied, (c) Any Conflicted
Value

For each of the following satisfaction values, at which time point
in the simulation do the most number of elements have the value.
Note: In the event of a tie, choose the later time point (higher
number). (a) Fully Satisfied, (b) Fully Denied, (c) Any Conflicted
Value

P2 Q7 Which intentions are Partially Denied at Time Point 1? Which intentions are Partially Satisfied at Time Point 1?
P3 Q8 Which intention would you choose to satisfy to make “Exercise”

Fully Satisfied?
Which intention would you choose to satisfy to make “Prevent
Unloading in Bike Lane” Fully Satisfied?

P4 Q9 On the previous page, we ask the question: ‘Which intention would
you choose to satisfy to make “Exercise” Fully Satisfied?’ You
answered [insert Q8 choice]. Please explain your answer to this
question.

On the previous page, we ask the question: ‘Which intention would
you choose to satisfy to make “Prevent Unloading in Bike Lane”
Fully Satisfied?’ You answered [insert Q8 choice]. Please explain
your answer to this question.

P4 Q10 How would assigning “Drive to and Play Soccer” the value Fully
Satisfied influence the model?

How would assigning “Parking Curbside” and “Temporary Con-
struction Plan” the value Fully Satisfied influence the model?

P5 Q11 Click here for a PDF to compare three different scenarios of the
Summer model. Should you choose to join a book club, community
garden, or soccer team?

Click here for a PDF to compare different scenarios of the Bike
Lanes model. How should you construct the bike lanes?

P6 Q12 On the previous page, we asked you to compare three different
scenarios of the Summer model and answer the question: ‘Should
you choose to join a book club, community garden, or soccer
team?’ You answered [insert Q11 choice]. Please explain your
answer to the previous question.

On the previous page, we asked you to compare different scenarios
of the Bike Lanes model and answer the question: ‘How should
you construct the bike lanes?’ You answered [insert Q11 choice].
Please explain your answer to the previous question.

Is our training sufficient for learning how to use EVO? and (b)
To what extent were subjects able to answer questions with
and without EVO?
(a) EVO Training. All subjects completed a common EVO
training module consisting of six questions. We matched
treatment groups EBk-XSm & ESm-XBk (i.e., EVO training
in Part 2, see Tbl. II) and XSm-EBk & XBk-ESm (i.e., EVO
training in Part 3), to understand if there were any effects
in reviewing one of the experimental models (i.e., Bike or
Summer) first. Tbl. V lists the score data for the EVO training.
All subjects achieved a score of 5 or 6 (out of a possible 6),
and the groups are not distinguishable. Fig. 7 shows the box
plots for the training and test times for the EVO Module.
Subjects took between two and five and a half minutes to
review the training materials and between one and four and
a half minutes for the EVO questions. Our null hypothesis is
that there is no significant variation between groups. We fail
to reject this hypothesis (KWES, p ≮ 0.1), unable to detect
variations between groups.

Again, subjects were asked to document any questions they
had after reviewing the EVO training, with nine subjects
asking a question. Questions focused on understanding the
simulation results and the differences between the EVO modes.
Two subjects asked about the order of the Percent (%) mode,
which was further clarified. Thus, subjects learned and demon-
strated proficiency in using EVO in under ten minutes.
(b) Answering Questions with EVO. We now review sub-
jects’ ability to answer the model questions listed in Tbl. IV.
Q4 and Q6 were each scored out of 3, one for each sub-

question. Q9 and Q12 were excluded from scores as they were
used to validate the answers of Q8 and Q11, respectively. Thus,
each model was scored out of 14.

Tbl. VI lists median scores for each treatment group. Scores
ranged between eight and fourteen for the Bike model, with a
median score of thirteen. Scores for the summer model ranged
between nine and fourteen, with a median score of twelve.
EVO produced a slightly better median for the Bike model
but also a slightly worse median for the Summer model. The
questions answered best by subjects were Q1, Q3, and Q5
(see Tbl. IV), with only one subject incorrectly answering
each question between both the Bike and Summer models
combined. The worst performing question was Q6(b) for the
Summer model and Q6(a) for the Bike model. The phrasing
of Q6 can be improved (see Sect. V-A for a discussion). Given
the score data in Tbl. VI, we did not expect to find variations
between groups (i.e., our null hypothesis) and, in fact, did not
find any statistical difference between treatment groups (i.e.,
KWES, p ≮ 0.1) with respect to the subjects’ scores for Bike
and Summer model questions.

We conclude that subjects were able to learn EVO, and then
use EVO to answer goal modeling questions.

C. RQ2: Comparing EVO with the Control

Next, we consider RQ2: How does EVO compare with the
control in terms of time and subjects’ perceptions? We again
break this research question into two sub-questions: (a) Does
EVO help subjects make decisions faster? and (b) How do
subjects perceive EVO?
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TABLE VI: Median scores (out of fourteen) for Bike and
Summer questions. Bold indicates subject group used EVO.

Group Bike Median Summer Median
EBk-XSm 13 12.5
XSm-EBk 13.5 13
ESm-XBk 12 12
XBk-ESm 13 11.5

Fig. 8: Timing Data (in seconds) for answering Bike and
Summer questions (see Tbl. IV).

(a) Bike and Summer Times. To measure subject completion
times, we added their times from Pages 1, 2, 3, and 5 (see
Tbl. IV). Pages 4 and 6 were excluded because they contained
solely free form answers where subjects’ time depended on the
length of their answer.

The times for both models are comparable, ranging from
five to twenty minutes. Fig. 8 gives the box plot for each
treatment group for the Bike and Summer model question
times. In the Bike model (left side), EBk-XSm (red) and
XSm-EBk (green) used EVO to answer the questions and
visibly lower time. Again, our null hypothesis is that there
is no difference between treatment groups. Using the KWES
test, we find the times for the Bike model to be signifi-
cantly faster (p < 0.01). In the Summer model (right side),
ESm-XBk (blue) and XBk-ESm (purple) used EVO to answer
the questions and also have visibly lower time. Again using
the KWES test, we find the times for the Summer model to
be significantly faster (p < 0.001).

Upon further inspection of Fig. 8, we observe a possible
learning effect—the results are more pronounced when the
control group used EVO (i.e., XSm-EBk (green) for the Bike
model and XBk-ESm (purple) for the Summer model). Yet,
when we conduct a pair-wise comparison based on treatment
group order and EVO, we do not find a significant difference
with respect to order but we do find one with respect to using
EVO; thus, we hypothesize that the interaction of subjects
being in the control group and using EVO may contribute to
this additional benefit. Therefore, we found a significant effect
between the treatment groups with respect to the time required
to answer the Bike and Summer questions.
(b) Qualitative Perspectives. Finally, we performed a qual-
itative analysis on the question, “Compare and contrast the
colored views with the non-colored views, which do you

TABLE VII: Average (mean) subjects’ rating of their difficulty
with three study aspects (where 0 was no difficulty and 10 was
complete difficulty): understanding the scenario description,
understanding the model, and answering the questions.

Scenario Model Questions
Phase 1 3.7 5.0 4.8
EVO 2.6 2.6 2.3
Summer 3.4 4.2 4.1
Bike 3.6 4.2 4.6

prefer? Why?”1. All subjects preferred the EVO view over
the control. More than half said that EVO was faster and/or
easier to use. Other comments include that EVO was more
intuitive, better for comparing models, and improved subjects’
high-level understanding of the model. While no critiques
of EVO were present in this question, we discuss subjects’
recommendations for improving EVO in Sect. IV-D.

We conclude that subjects preferred using EVO over the
control. Subjects’ completion times were faster with EVO.

D. Improvements and Recommendations

Finally, we address RQ3: How do subjects rate the study
instruments and experience? To answer this question, we
collected optional quantitative ratings after each module and
qualitative reports at the end.

For each of Parts 1–4 in Tbl. II (i.e., the initial training
sequence, the EVO training, the Summer model, and the Bike
model), subjects rated their experience completing each part.
They were asked to rate their difficulty with the three aspects
(where 0 was no difficulty and 10 was complete difficulty):
(i) understanding the scenario description, (ii) understanding
the model, (iii) answering the questions. Tbl. VII gives the
average difficulty rating for each aspect and each part. Sub-
jects had the most difficulty during the initial training phase,
which seems appropriate because subjects had very limited
familiarity with RE and goal modeling (see Tbl. III, discussed
in Sect. III-D). Subjects perceived the Bike scenario and
questions as slightly more difficult than the Summer model
but perceived the models similarly. The EVO training was
rated as the least difficult part, with average scores of 2.3-
2.6. While this provides additional data for our assertions in
RQ1, comparing between the scores in Tbl. VII is confounded
by the fact that the EVO training was the shortest module and
built on the Phase 1 training.

Finally, we ask subjects for suggestions and additional com-
ments. Specifically, to gather suggestions, we asked the ques-
tion: “What suggestions or changes would you recommend to
the developers of this goal modeling language (and tool)?”
Tbl. VIII lists the recommendations provided by subjects,
organized into three categories: improvements that can be
made to EVO, goal modeling, and our study instrumentation.

Subjects made a variety of recommendations about improv-
ing the look and feel of EVO—from changing the colors
of conflicting evidence pairs to adding ticks to show time
points in the Time mode. We are aware of the accessibility
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issues associated with red-blue color vision deficiencies (see
Sect. VII for details).

Since this study was conducted in isolation from tooling and
other approaches, many of the goal modeling recommenda-
tions have already been investigated by other approaches. For
example, goal prioritization, XOR links, model-level metrics,
and quantitative valuations have all been investigated by re-
searchers [15], [16], [17], [18]. We found the recommendation
about improving the visual aspects of the links of interest and
may pursue this in future work.

Finally, subjects recommended improvements to our study
instrument. Subjects recommended clarifying the differences
between link types, evolving function types, and the difference
between the initial state and time point 0. Specifically, with
respect to EVO, one subject thought more explanation was
required to understand the difference between % and Time
mode. Other comments included adding a progress bar and
improving our study handouts and questions. Three subjects
(excluded from Tbl. VIII) encouraged the developers to im-
plement the EVO feature.

Six subjects provided additional comments. Of these re-
sponses, three mentioned that the survey was long/hard, one
said that they do not like goal modeling, one thought that
(F ,F ) is the color black, and the final comment explained an
inconsistency in the subject’s answer to a previous question.

We conclude that subjects rated the study instruments and
experience as suitable and not overly difficult; yet, roughly
10% reported that the study was long or hard. Subjects found
the initial training most difficult and the EVO training easiest.

V. DISCUSSION

Next, we describe our lessons learned, compare the bike and
summer model, and discuss the validity of our experiment.

A. Lessons Learned and Implications for Research

Subject Background and Recruitment. We developed this
study instrument over a six-month period. We first iterated
the instrument with individuals in our lab, then completed
a small pilot with four subjects. The purpose of the pilot
was to evaluate the quality of our instrument and understand
what timing data was generated from our Qualtrics® XM
platform. The pilot helped us improve the quality of the data
we collected. We added opportunities for subjects to take
breaks and originally collected one timing value for Q1-12 in
Tbl. IV. We discovered these values varied dramatically based
on how much text subjects entered in the free form questions.
As listed in Tbl. IV, we separated these questions across
six pages (see Page column) and added timing information
to each page. It was extremely difficult to recruit subjects
for a survey that took a full hour. Due to Smith College
policies and U.S. tax legislation, we were not able to offer
remuneration in an amount over $20 USD. We launched three
separate iterations of the study. Our first emailed researchers
within the goal modeling community and targeted trained
modelers. We received five responses and of these, only one
completed the study instrument. Our second attempt was to

TABLE VIII: Recommendations for Improvement

EVO Improvements
- Add ticks or an outline to time mode. (x4)
- Choose prettier colors (and better fonts). (x2)
- Better contrast between text color and EVO color. (x2)
- Change conflict colors:
- All conflicts the same color.
- (P ,P ) should be grey, reduce visual noise.
- Use green/yellow for conflicting evidence pairs.

- Left to right arrow on time mode.
- Eliminate possible left-right bias in % mode.
- Colors may not be accessible to all users. (x2)
Goal Modeling Improvements
- Add goal prioritization in models.
- Organize models as decision tree.
- Improve visualization of links (maybe with color).
- Create model-level metrics (in a table).
- Distinguish between OR and XOR links.
- Make evolving functions more explicit.
- Add more possible values for (s, d).
Study Instrument Improvements
- Clarify difference between + and +S. (x2)
- Better explain evolving functions.
- Clarify difference between initial state and time point 0. (x2)
- Clarify difference between % and Time mode.
- Organize handout landscape with models left to right.
- Text too crowded/overlap, make images simpler/larger. (x2)
- Change “become Fully Satisfied” wording in Q6.
- (F ,F ) looks black, not dark purple.
- Add progress bar to questionnaire.

recruit subjects within a large software engineering class with
Tropos instruction at another institution, again receiving only
one completed response. After two unsuccessful attempts, we
pivoted to an in-person lab study. We updated our protocol to
include additional training and recruited students as described
in Sect. III-D. There may be a cognitive difference between
participating in a one-hour in-person lab session as opposed to
completing a one-hour online survey, even when remuneration
amounts are the same. We had sufficient volunteers for our in-
person version and felt this was an important lesson learned.
Improvements to the Study Instrument. We reviewed the
questions and supplemental information from the study by
Hadar et al. [7] and iteratively developed our study instrument.
We encourage other researchers to use and adapt our survey
instruments; thus, we report potential areas for improvement.
For example, in question Q6 (for both the Bike and Summer
models, see Tbl. IV), we asked “how many times over the
simulation does the element become Fully Satisfied” which
would have been better rephrased as, “how many time point(s)
over the simulation is the element Fully Satisfied”.

It was sometimes difficult to achieve task equivalency. For
example, the tasks in question Q8 (see Tbl. IV) are not exactly
matched between models. The correct Q8 answer for Bike
model was none of the above because no intentions fulfill
Prevent Unloading in Bike Lane. To satisfy Exercise in the
Summer model requires either Water-Weed-Enjoy Garden or
Drive to and Play Soccer, but we did not include Drive to and
Play Soccer as an option, intending subjects to select Water-
Weed-Enjoy Garden. Since the Bike model had a none of the
above, we included the same for the Summer question, yet
this resulted in subjects choosing it because they wanted to
select Drive to and Play Soccer. In a future iteration of this
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instrument, we would change the selected intention for the
Bike model and remove the none of the above option.

In our analysis, we were unable to detect any differences
between scores on the models with or without EVO. Future
work is required to determine whether our study instrument is
sufficiently discriminatory. One of the aspects we iterated on
was the length and complexity of the questions we asked in
this study. We opted for a balance in these factors to ensure
that subjects would complete the study in one hour, which we
agreed upon as a reasonable upper bound.
Statistical Methods. Given our per group sample size, any
statistical test will have lower power to make conclusions
(see Sect. V-C and online1). In Sect. IV, we used the KWRS
test to evaluate if there are distinct groupings within our
sample data [14]. The KWRS test is valuable for small sample
sized data because it does not make assumptions about the
distribution of the data and is not influenced by data points
that vary greatly in magnitude, which is useful for time data.

B. Comparing Bike and Summer Models

As introduced in Sect. III-A, we explored our research ques-
tions between-subjects. In Sect. IV, we found a statistically
significant difference between using EVO and the control in
the time it took subjects to answer questions about both the
Bike and Summer model. Yet, in this test, we cannot directly
compare the times associated with the Bike and Summer
model or control for individual subject variability.

We briefly explore variations of the time it took subjects
to answer the test questions (i.e., our dependent variable). We
compare test times given three factors (independent variables):
(i) whether the subject used EVO, (ii) whether it was the first
or second measurement for that subject, and (iii) whether the
measurement was of the Bike or Summer model. In order
to identify which factors are significant, we compared within
subjects by fitting multiple linear mixed-effects models and
then conducted a model comparison with repeated measures
data using a likelihood ratio test (i.e., ANOVA) [19]. We used
a linear mixed-effects model to account for non-independence
(i.e., there were two measurements for each subject).

Comparing the full model to one with interactions between
factors showed that the interaction terms in the model are
not significant (p > 0.05). We found the EVO factor to
be significant (p < 0.001), meaning that within-subjects
there was a difference in the time it took subjects to answer
questions with EVO as opposed to without EVO. The order
of whether subjects were given the control or the treatment
first was significant (p < 0.001), implying that there was a
learning effect over time. Which model was measured was
not significant (p > 0.05), meaning that there is no significant
difference in the times for the Summer and Bike models.

Since there is no significant difference between models
and no interaction effect, we can analyze this as a two-way
ANOVA where using EVO and order of EVO presentation
are the two factors. Using a statistical power test for repeated
measures ANOVA within-subjects with a medium effect size,
we found that the minimum sample size using G*Power [20]

for our experiment was 56. Thus, we have low statistical
power. We did not find any difference between the Bike and
Summer models and found the presence of a learning effect
within subjects.

C. Threats to Validity
We discuss threats to validity using the categories in [13].

Conclusion Validity. Our main threat in this experiment is
low sample size. Having 32 subjects spanning four treatment
groups is considered a low sample size. Thus, we chose to
conduct our main analysis between-subjects to mitigate this
threat. We may have experienced a reliability of measures
threat, as subjects asked questions about the wording of Q6
(see Sect. V-A). We wrote scripts to analyze our data wherever
possible and automatically recorded page completion times
to ensure reliable measurements. Qualitative data was ran-
domized before review and categorization. Different authors
conducted the in-person and data analysis components to
reduce researcher bias. To mitigate variations in treatment im-
plementation, we standardized the experimental setup by using
our online platform, videos, and pdf handouts to ensure that
the subjects had equivalent training materials (see Sect. III-B),
and maintained our laboratory setup throughout the study
period, to ensure a consistent in-person experience. We do not
believe there is a random heterogeneity of subjects risk, since
our population was homogeneous, having similar knowledge,
abilities, and previous experience with English, Tropos, and
RE (see Tbl. III). In a future study, we would collect data
about subjects’ year in the undergraduate program (e.g., first-
year, seniors) to further mitigate this risk.
Internal Validity. We explicitly designed our study to control
for a learning effect or maturation risk (i.e., where one group
learns a treatment faster than another). We gave opportuni-
ties for subjects to take breaks if they were fatigued and
shortened the instrument wherever possible. We controlled
for an instrumentation effect in our 2x2 design; yet, the
Bike model questions may have been slightly harder (see
Sect. IV-B). With this design, there is still a risk of carryover
effects [21]. Our voluntary study with cash remuneration may
have experienced a selection effect. To our knowledge, no
subjects used BloomingLeaf or EVO prior to the study.
Construct Validity. We conducted multiple pilot mini-studies
(not discussed in this paper) to ensure that our study instrument
was measuring our intended constructs. In one such study, we
found that our unit of time measure was inaccurate because it
included too many questions; hence, we divided the questions
across multiple pages as listed in Tbl. IV and isolated qualita-
tive questions. We collected data in multiple forms (e.g., scores
and times) and asked different types of questions to mitigate
mono-method and mono-operation biases. As always, we have
threats of hypothesis guessing and evaluation apprehension.
Some subjects expressed nervousness asking if they needed
to review data structures or read about goal modeling before
participating. Some students who took a software engineering
course may have scored better overall; yet, our common
training protocol may have limited this threat.
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External Validity. Our setting was not reflective of the use
of EVO in the “real world”. We conducted the experiment
one-on-one in our lab using a survey, instead of embedding
EVO within a goal modeling tool (e.g., BloomingLeaf). Due
to constraints over participant time, we were unable to validate
EVO on large models that are more reflective of “real world”
scenarios. Our homogeneous population of undergraduate stu-
dents means that we cannot generalize to the broader RE
population, but given the limited prior knowledge of our
subjects (see Tbl. III), these results may, in fact, generalize.
Additional experiments with different populations, problem
domains, and larger models for scalability are required.

VI. RELATED WORK

Recent work has critiqued the adaptability of GORE ap-
proaches [22]. In this paper, we address this gap by improving
the interpretability of Tropos evidence pairs. As already intro-
duced in Sect. I, Hadar et al. [7] and Siqueira [8] studied the
comprehensibility of Tropos models with respect to Use Case
models. While it is difficult to compare our results with these
studies because we only evaluate Tropos models, this work
was influential in the design of our study and the importance of
controlling for the use of different models, while investigating
the performance of subjects on analysis tasks.

Using color as a technique to improve visualizations of goal
models has been a topic of recent interest within the commu-
nity. Amyot et al. used colors to visualize analysis results in the
jUCMNav tool for URN [17], while TimedGRL used color in
heat maps to visualize evolving GRL models [1]. Varnum et
al. proposed using colors to help stakeholders interpret the
evidence pairs used in Tropos for intention evaluations [10].
At the same time, Oliveira and Leite proposed mapping the
primary colors onto NFR soft goal labels and contribution
links, allowing color values to be quantitatively calculated and
propagated throughout the model [23]. Varnum et al. used a
static set of colors; whereas, Oliveira and Leite use a large
range of colors calculated dynamically. In reviewing these
approaches, we chose to first validate the coloring approach
of Varnum et al. because of its static nature, which made
it easier to evaluate experimentally and understand whether
color was an effective approach. Further research is required to
validate the choice of colors in both approaches, and whether
the dynamic nature of Oliveira and Leite’s approach causes an
additional cognitive load that reduces the overall effectiveness.

We built on the methodology of similar studies in RE for
our between-subjects experiment and followed the guidance
in [13] and [24]. Winkler et al. reported on a between-
subjects 2x2 design similar to ours with sixteen subjects [25].
The authors assumed that the treatment group had increased
precision and a reduction in time to complete the tasks due
to working with direct output from the tool; whereas, the
control group completed the task manually. We attempted to
control for differences in tool usage by providing both groups
with direct output from BloomingLeaf. Ghazi et al. reported a
study comparing two navigation techniques for requirements
modeling tools [26]. They used time limits to motivate the

participants to work as fast as they would on real tasks in
industry, giving the subjects about five minutes to try out
the tool. However, this may force subjects to work faster,
which may result in worse results. To prevent this, we let the
subjects take the time needed to review the training documents
since our population comprised new learners. Santos et al.
presented a quasi-experiment to explore the interpretability
of iStar models given different concrete syntax [27]. Subjects
were tasked with identifying defects in a goal model, a task we
did not include in our study as it may have been too difficult
for new learners and increased their fatigue.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored how using EVO to visualize evi-
dence pairs impacts an individual’s ability to reason with goal
models that evolve over time. To do so, we conducted an IRB-
approved between-subjects experiment with 32 undergraduate
students. We found that when given a consistent training
protocol for goal modeling and simulation, each treatment
group performed equally well on the initial training modules,
establishing a baseline for comparison between treatment
groups. Subjects were able to learn EVO in under ten minutes
and use the extension to make decisions. From this experiment,
we concluded that subjects were able to answer goal modeling
comprehension questions with EVO faster than without EVO
but we did not find a significant difference between the scores
of subjects who answered questions with and without EVO.
Thus, there was no evidence that EVO has an impact on an
individual’s understanding of goal models. However, subjects
had a positive response to EVO and all preferred the EVO
view over the control, with most saying that EVO was faster
or easier to use. Finally, our subjects, without prior training
in GORE, were able to complete the instrument without much
difficulty. By demonstrating the impacts of EVO, we increase
the potential of automated analysis techniques in Tropos. We
share our materials as part of our open-science package1.

Given the empirical evidence of the effectiveness of EVO
presented in this paper, we encourage the original authors
to continue their development of EVO within BloomingLeaf.
Additionally, as mentioned in Sect. VI, the selected colors
of blue, red, and purple should be validated. Our subjects
proposed several alternatives for conflicting colors in Tbl. VIII.
We are investigating these alternative color palettes, as well
as palettes for colorblind users. In future work, we intend
to replicate our study in order to establish external validity
(see Sect. V-C), both with subjects in a different context and
using EVO embedded within BloomingLeaf and other goal
modeling tools. Additionally, future work includes conducting
case studies of real groups in early-phase RE using EVO.
Other work included extending and validating the EVO feature
with other types of analysis.
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