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Multi-Autonomous Vehicle Insertion-Extraction
System (MAVIES) Human Interface Design and
Modeling

12/21/2011

Abstract

MAVIES (Multi-Autonomous Vehicle Insertion-Extraction System) is
the culmination of a year-long multi-stakeholder effort between UTRC
and the Humans and Automation Lab at MIT to design a human inter-
face for insertion and extraction missions with multiple UAVs and option-
ally piloted rotorcraft. The design process is a successful application of
the Hybrid Cognitive Task Analysis (hCTA) process that tracks dozens
of tasks, decision-making processes and their associated situation aware-
ness requirements to determine the proper allocation of responsibilities
between the human operator and the automated mission planner.

This paper discusses the various accomplishments through several phases
of a disciplined process of planning, analysis, design, implementation
and testing of the human interface; this process included cognitive walk-
throughs and interviews with helicopter pilots as subject matter experts as
well as integration with automation systems and mission and vehicle sim-
ulation engines developed at UTRC. We also discuss ongoing novel efforts
to model human operator mission performance and utilization when the
operator simultaneously pilots their own vehicle and commands multiple
“autonomous wingmen.”
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1 Introduction

Current-day Unmanned Aerial Systems (UAS) realize the vision of the pilotless
remote-controlled aircraft that observes and strikes targets at a great distance.
However, the projected evolution of the operations of these systems is extending
to missions where an Unmanned Aerial Vehicle (UAV) is able to land in a possi-
bly hostile environment and insert or extract cargo or personnel. Additionally,
high level control of UAS from a manned aircraft is expected to extend the
range of these systems and improve operational teaming between manned and
unmanned vehicles [1]. This work, a collaboration between the MIT Humans
and Automation Laboratory and UTRC, focused on the development of a hu-
man operator interface for controlling multiple, heterogeneous UAVs in insertion
and extraction missions.

The human user of the Multi-Autonomous Vehicle Insertion-Extraction Sys-
tem (MAVIES) is able to control a cargo UAV (CUAV) and two scout UAVs
(SUAVs) using a point-and-click graphical user interface. The task environment
for insertion-extraction missions is assumed to be dynamic and rapidly chang-
ing. Examples of insertion-extraction missions include those where a friendly
unit is in need of cargo resupply, or requires medical evacuation via the cargo ve-
hicle from some location away from the base. The scout UAVs may be armed, in
which case they can neutralize enemies on or near the CUAV’s path or potential
landing sites.

2 Human Interface Design Method

The human interface design of MAVIES was conducted through a number of
phases:

e General mission analysis and information gathering
e Detailed analysis of tasks to be performed by the human operator
e Human interface requirements generation

e System design based on requirements

To generate situation awareness requirements for the interface, a Hybrid
Cognitive Task Analysis (hCTA) was performed. This analysis method derives
the information requirements of the human interface from a set of operational
tasks. General mission analysis and information gathering sessions were per-
formed at Sikorsky with Sikorsky test pilots as subject matter experts. Sub-
sequently, the human interface was designed based on the input needs of each
particular task and the situational awareness requirements of that task.



3 Hybrid Cognitive Task Analysis

The development of futuristic human interfaces poses a chicken-or-egg conun-
drum when the designers of a system seek to analyze a domain in order to
derive interface design concepts, but no interface has ever been designed for the
domain. In cases where no previous implementations of an interface exist, hy-
brid cognitive task analysis extends well-worn cognitive task analysis methods
to generate information and display requirements using a scenario description
and an enumeration of high-level mission goals. This method of analysis has
four steps:

1. Generate a scenario task overview
2. Generate an event flow diagram
3. Generate situation awareness requirements

4. Create decision ladders for critical decisions

The hCTA method has previously been used to generate functional and
interface requirements for the supervisory control of multiple, heterogeneous
unmanned vehicles, and for the development of an interactive in-cab scheduling
interface for railroad locomotive operators [14].

3.1 Scenario Task Overview

The purpose of the initial step in the hCTA process, generating the scenario
task overview, is to capture a more formal definition of the mission statement in
terms of phases, representing high-level groupings of tasks, and of the tasks in
each phase. The phases and tasks are oriented to particular goals and subgoals
in the mission.

For MAVIES, five phases were specified for a single user operator controlling
multiple UAVs in an insertion-extraction mission. They were named Mission
Assignment, Takeoff, En Route, Insertion-FExtraction, and Return to Base. In
the Mission Assignment phase, the operator receives a mission, requests sup-
port, and prepares for mission commencement. At the Takeoff phase, the op-
erator uses the scout UAVs to determine a safe path and landing site for the
cargo UAV. Then the cargo UAV takes off, beginning the En Route phase,
where the user monitors the CUAV’s progression to the landing site. During
Insertion-Extraction, the CUAV lands at the designated site, performs the on-
loading and/or off-loading objective of the mission, and subsequently takes off.
During the Return to Base phase, the operator monitors the CUAV’s safe travel
home to end the mission. 28 high-level tasks were specified at this stage, or-
dered temporally within their respective phases, and labeled “continuous” or
“sequential.”
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3.2 Operational Event Flow

In the next step of the design process, an event flow diagram was generated,
providing a much a finer level of specification of operator tasks that would even-
tually help to produce a set of informational requirements for the user interface.
The event flow diagrams for MAVIES are in Appendix A of this document. An
event flow diagram, effectively a flowchart program of the operator’s execution
of a task, was created for each phase of the scenario task overview. Symbol
types for blocks in the diagram represent:

1. Assumptions or conditions to be met prior to the start of a phase

2. The commencement and termination of phases and transitions between
phases

3. Operator processes

4. Operator processes requiring collaboration with automation
5. Simple decisions

6. Complex decisions

7. Loops and iterative execution

8. Arrows for flow of operator execution

The event flow diagram symbology is given in Figure 1. Process, decision
and loop blocks are labeled with alphanumeric codes so that they can be cross-
referenced throughout the rest of the hCTA process. The labels consist of a
single letter (P for processes, D for decisions, L for loops) and a number. 91
blocks were created in generating the event flow diagram. The flow diagram was
grouped into 8 sections: one section for each of the 5 phases, and, separately, 3
sections representing continuous monitoring loops. Each continuous monitoring
loop has a process that could interrupt the normal task flow in an emergent
situation—such as a UAV being low on fuel. The 91 total blocks included 39
processes, 14 loops, and 20 decision blocks.

An example of the event flow is shown in Figure 2. In this segment, the
operator decides if the CUAV requires that the SUAVs escort it on its way to the
landing site, and acts accordingly. Then the operator performs the Route Safety
monitoring loop, checking the route for hostiles, weather problems, and obstacles
with the help of the automation. If the route is compromised, another loop
process searches for safe alternatives, and reroutes the vehicles on an alternate
path. Once the CUAV arrives at the landing site, the insertion-extraction phase
of the mission begins.
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SAR Number SAR Level Description

7 Perception Visual and auditory feedback of number
of escorts needed by CUAV (D4)

Comprehension | CUAV needs or doesn’t need escorts (D4)

Projection Changes in schedule according to the new
SUAV assignment (D4)
8 Perception Visual feedback of position of CUAV

while en route to landing site (P6)
Comprehension | Position and movement of CUAV (P6)

Projection Estimated distance and time to reach the
landing site (P6)

11 Perception Visual feedback of route safety (number
of hostiles and movement, weather condi-
tions, obstacles) during CUAV traversal
(L3, P9)

Comprehension | Current route safe or current route com-
promised (P9, DL1)

Projection If route compromised, impact of the un-
safe route on schedule (P11)

Table 1: Three example situation awareness requirements for the En Route
phase of MAVIES.

3.3 Decision Ladders

In order to determine what difficult tasks may have performance benefits with
the advent of automation, a structure called a Decision Ladder [17] was gen-
erated for each complex decision-making process identified in the operational
event flow. Decision ladders map the decision making process as it proceeds from
lower to higher levels of information processing and decision making. Specifi-
cally, each decision making process block is identified to represent one of three
types of decision related behaviors; these are, in order from lowest to highest,
skill-based behavior, rule-based behavior, and knowledge-based behavior. The
complete decision ladders for MAVIES are in Appendix B of this document.

For the MAVIES design, decision ladders were generated for the complex
decisions named “Is There a Suitable Initial/Alternative Route,” and “Is Identi-
fied Site Safe.” Figure 3 shows a small part of the decision ladder for the latter.
This particular decision ladder is annotated with shaded blocks that suggest
functionality for different levels of automation that would be implemented as
decision support for the user.
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3.4 Situation Awareness and Information Requirements

The hallmark of the hCTA process is the derivation of Situation Awareness
Requirements (SARs) from the event flow that guide the designer in selecting
elements for the user interface. Traditional formalizations structure Situation
Awareness (SA) as the flow of information starting from human perception,
through comprehension of the information, to the human projection into cir-
cumstances in the future [7]. The situation awareness requirements derived for
MAVIES are in Appendix C of this document.

All three of these levels of SA are relevant to task execution blocks in the
event flow. A set of 50 SARs were generated and traced through the perception-
comprehension-projection levels of SA, and each was listed with labels of one
or more process blocks for which it was needed by the operator. This informa-
tion, in combination with the operational event flow, was used to generate the
interface.

Three of the SARs are given as an example in Table 1. These are for the
En Route phase of MAVIES and represent the operator’s SA for the time and
distance for the CUAV to reach the landing site, whether or not the CUAV
needs escort(s), and the possibility that the route could be compromised by
hostiles, weather, or discovered obstacles. Each component of SA is labeled to
associate it with one or more blocks in the operator event flow structure.

4 The MAVIES Human Interface

The MAVIES human interface was designed to work on dual visual displays,
and consists of two screens, a Situation Awareness display with major interface
components for controlling the vehicles, and a Health and Status display for
monitoring the health of the vehicles and the status of the mission. A set
of interface design storyboards (which were also used to perform a cognitive
walkthrough exercise with test pilots at Sikorsky) are given in Appendix D.

The interface is designed to accommodate both naturalistic and rational
styles of decision making. Naturalistic decision making [10] emphasizes modeling
how humans make decisions in complex, dynamic real-world environments. A
more rational decision making process proceeds with the aid of automation. The
MAVIES interface facilitates both naturalistic and rational decision-making in
the mission environment by providing all available information to the user and
permitting them to either generate UAV routes and landing sites by hand or let
the automation make such decisions for them.

4.1 The Situation Awareness Display

The Situation Awareness display is shown in Figure 4. It provides geo-spatial
SA with a zoomable map panel representing the mission environment. It shows
the locations of the UAVs, target vehicles of low, medium and high priority of
interest, and the UAVs’ home base. The symbols for the UAVs and targets were
chosen to conform to MIL-STD 2525 [4]. The SA display also shows information

12
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Figure 5: The MAVIES Health and Status Display.

related to the UAV routes of flight, landing areas and landing sites, and terrain
information such as the location of obstacles and bodies of water.

The SA display has a panel at the top to indicate the current phase of the
mission. The SA display allows the operator to select, examine and compare
landing sites and routes for the CUAV with the help of the automation, which
evaluates the safety of routes and landing sites. The automation indicates the
results of the safety evaluation by coloring landing sites, paths and waypoints
blue, yellow or red to indicate respectively that they are safe, that the safety
cannot be determined, or that they are unsafe.

The user generates paths and landing sites for the UAVs either by hand or
automatically, and can compare the plans over all of their characteristics using
the two panels at the bottom of the display. The user may also adjust the
criteria of what defines an acceptable or unacceptable landing site or route by
setting the relative weights of characteristics in the automation’s algorithm.

4.2 The Health and Status Display

The second display, which provides health and status information to the user,
is shown in Figure 5. It has a panel representing the telemetry, video feeds,
and relevant alerts for each UAV. These panels are assumed to be customizable
depending on the exact types and configurations of the UAVs. The health and
status screen also has a task timeline to indicate the planned tasks for each
UAV, allowing the user to adhere to the mission schedule and perform landing,
insertion and extraction at the appropriate times.

14



4.3 Usability Evaluation

On November 4th, 2011, our team visited Sikorsky Aircraft in Stratford, Con-
necticut, to conduct interviews and other exercises with rotorcraft test pilots as
subject matter experts. The two test pilots are part of Sikorsky’s engineering
department and collectively have many years of experience flying helicopters in
the US Army and the Australian Air Force.

A cognitive walkthrough was performed with the pilots as a method to eval-
uate the usability of the MAVIES interface. In this instance we chose the task
of selecting and evaluating a landing site and instructed the pilots to speak out
loud about their thought processes while completing this task with MAVIES.
Storyboard images of the situation awareness display were shown to the pi-
lots as a stand-in for a working prototype. Audio recordings were made of the
discussion.

One major consideration that was raised as part of the exercise was the
overwhelming importance of aircraft performance limits to the pilot’s situation
awareness. Poor planning in relation to performance and power is a common
contributing factor to rotorcraft accidents, where typically the helicopter collides
with the ground or with obstacles during a takeoff, an approach to hover, a
landing, or other maneuvers at low altitude. In insertion-extraction missions, it
is important for the operator to know the weight, and thus the available power,
of the aircraft before and after loading or unloading at the landing site.

Performance factors such as power margin and rate-of-climb of the rotorcraft
will affect landing site selection in conjunction with others—for example, the
presence of obstacles or other hazards in the vicinity of the landing site. As
a future improvement to the MAVIES interface, we may designate a landing
site parameter that is a function of power margin, obstacle distance, slope and
other factors that can aid the operator situation awareness about the safety
of the site. We have also considered designing a separate screen with controls
and visualizations devoted to better situation awareness of aircraft performance
factors as they pertain to the insertion-extraction mission.

4.4 MAVIES Implementation

A prototype of the MAVIES user interface was implemented using the Qt cross-
platform and application and UT framework [16] in C++ on Windows platforms.
At the time of this writing, implementation of parts of the situation awareness
display—specifically UAS base creation, target vehicle creation, landing site
creation, and landing site comparison via a star diagram—are complete. The
health and status screen is currently implemented as a mock-up. What follows
is an explanation of the software construction and what classes of Qt were used.

The application begins simply by initializing the application window, sev-
eral images and labels, and layout classes. There are two layout types used:
QVBoxLayout and QHBoxLayout. QVBoxLayout lays out the items added to
it vertically, and QHBoxLayout does so horizontally; these layouts are stacked
to get the overall layout for the situational awareness window. The method

15



QODbject::connect is for event handling; it links a certain action to a certain
event (for instance, right-clicking the map to displaying the context menu).

The three classes, LandingSite, UAV and ForeignCraft are very similar. A
future design consideration should be to make a superclass called “VehicleIcon”
containing the common functionality of these three classes, and subclass it ac-
cordingly. One issue to consider when using Qt is that these classes subclass
from QGraphicsltem. Many features of Qt only work for subclasses of QOb-
ject or its subclass QWidget. QGraphicsltem is not a subclass of these, and
is treated very distinctly. We may consider using multiple inheritance, letting
the Vehiclelcon class inherit both QGraphicsItem (allowing for simple graphical
functionality) and QObject, but we note that multiple inheritance is difficult
with QObject, due to the way the Qt library parses this particular class (sub-
classing from QODbject requires one do many special things for MOC to work
properly). As an example, Qt has animation capabilities, but only for subclasses
of QObject. The animation for the UAVs Launch feature was implemented by
hand. However, we feel that multiple inheritance should be considered in the
long run.

For several reasons, we need to keep a list of all instances of each of these
classes (i.e. a list of all the LandingSite instances). This is useful because it
allows other classes, such as the context menu CustomContext class, to ma-
nipulate the LandingSite instances. Ultimately we decided to implement this
as a global variable. The classes have static methods which return this list of
pointers to instances.

QGraphicsScene was subclassed twice to make LSGraphicsScene and RS-
GraphicsScene. These are the landing site selection and comparison screens,
respectively. This allows for basic event handling, such as clicking the LSGraph-
icsScene to update one of the landing site criteria, or to update the graphical
display of the landing sites criteria in the RSGraphicsScene display.

5 Operator Modeling

The aim of the MAVIES operator modeling effort is to provide an alternative
to human-in-the-loop experiments for evaluating design choices that can affect
human performance in supervising unmanned vehicles while flying an option-
ally piloted vehicle. It is assumed that the optionally piloted vehicle has all the
controls that a regular aircraft would have and is capable of flying on autopilot
if needed. The unmanned vehicles are assumed to have enough autonomy to
take off, land, and move from one location to another autonomously. Certain
unmanned vehicles can also be armed and can fire missiles. The unmanned ve-
hicles are controlled via a point-and-click interface. Mission-related information
can be communicated to the command center using a keyboard. A high level
representation of the model is provided in Figure 6.

16
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Figure 7: The optionally piloted vehicle component of the operator model.

5.1 Discrete Event Simulation

The modeling technique utilized in this work is that of queuing-based discrete
event simulation (DES). DES models a system as it evolves over time by a rep-
resentation of events. Human supervisory control of unmanned vehicles has a
complex, time critical, event-driven nature, which makes DES models appropri-
ate for modeling in these settings. Queuing-based DES models have also been
used in the past to evaluate pilots visual behavior when flying a jet airplane [2].
In other studies, queuing models have been used to evaluate the security and
efficiency of air traffic control systems or flight management tasks [3] [18]. In the
next sections, various constructs of the DES model are presented and discussed.

17



: Internal events
! @ System-generated
P Types of various events
# Conditioned/triggered
by other events

H.
-

: External events
i @ Environmental events

Figure 8: The Unmanned Aerial Systems component of the operator model.

5.2 Operator Model for Optionally Piloted Vehicle

The Optionally Piloted Vehicle (OPV) component of the model is given in Fig-
ure 7. The overall goal of the pilot is decomposed into sub-goals, which in turn
can be broken down into various tasks. This architecture is similar to Deutsch’s
D-OMAR model for examining flight deck technology [5].

Cognitive Task Analysis (CTA) can be used to gather information about
different tasks that need to be completed to accomplish a certain (sub)goal. In
the past, several studies have analyzed tasks that pilots complete during various
phases of a flight, such as approach and landing [8] [9]. One study even provides
a detailed analysis for a flight from Los Angeles to New York [11]. However, in
all these studies the time required to complete various tasks is not specified (or
is estimated roughly), which can be problematic, since accurate task completion
times (service times) are essential for having accurate DES models. One way to
alleviate this problem is to gather detailed data using a flight simulator.

5.3 Unmanned Aircraft System

The Unmanned Aircraft System (UAS) component of the model is given in
Figure 8. Internal events arise due to the nature of the mission and vehicle
capability. An example of an internal event is a replanning of vehicle task as-
signments to ensure that the tasks that the operator wants to complete are
allocated to the vehicles. Such an event should be expected by both the oper-
ators of unmanned vehicles and designers of the system. It is also important
to note that events can be triggered by other events, and that some events can
disrupt the regular flow of events (for example, a certain event needs to be ser-
viced before any other event can be serviced). For instance, finding a hostile
target can trigger an event asking the operator to approve destruction of this
target. Environmental events are external to the system and arise due to un-
predictability of the environment. Events like these, such as an emergent threat
area or a meteorological condition, create the need for operator interaction.

18
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5.4 Operator Induced Events

Operator-induced events address the ability of the human to intervene at any
point and create additional tasks or re-plan, if desired. This can occur if the
operator modifies an existing plan (replanning) with the expectation that the
intervention will lead to improved performance. The operator can also task
the vehicle to search a specific area if he/she thinks that the automation is
doing a suboptimal job in searching that specific area. Although both vehicle-
generated and operator induced events are internal to the system, the former are
pushed on to the operator by the system, whereas the latter are generated by
the operator. Similar to the system-generated events, operator generated events
can also trigger and be dependent on other events. The operator induced events
module of the model is shown in Figure 9.

5.5 Queue

The queue consists of three parallel sub-queues, based on Wickens’ multiple
resource theory [21]. More specifically, each sub-queue stores a different type
of event. The three types are control, monitoring, and communication, which
correspond to the aviate, navigate, and communicate task breakdown used in
aviation domains. The queues are populated simultaneously by events from the
optionally piloted aircraft and UAS system. The queuing policy defines the
order by which the events that are waiting in the queue are serviced and can be
varied to capture operator task switching strategies
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® Service times

Figure 11: The service times component of the operator model.

There are various queuing policies that can be implemented in a DES model.
Some examples of policies include first-in-first-out (FIFO), last-in-first-out (LIFO),
shortest service time first, and highest attribute first, among many others. The
FIFO, LIFO, and shortest service time first queuing policies are self-explanatory.
The highest attribute first represents a policy in which the high priority events
are serviced first [15], and priorities of the events can be determined by the
designer of the model.

A queuing policy that includes a combination of several policies can also be
implemented. The within-queue queuing policy defines the order by which the
events that are waiting in the queue are serviced and can be varied to capture
operator task switching strategies. Various within-queue queuing policies can
be implemented in a DES model. We suggest using a priority based within
queue queuing policy, where priority levels of the events can be determined by
the designer of the model based on the mission scenario, task types and (if
available) historical data sets. The between-queue queuing policy defines the
order by which different event types are attended. Based on the aviate navigate
communicate task priorities, we suggest assigning priority levels to the three sub-
queues, i.e., when choosing between control, monitoring, and communication
tasks of the same priority level, the pilot will choose to service the control task,
followed by monitoring and communication tasks.

More specifically, each sub-queue can have a priority coefficient that will be
multiplied by the priority level of the tasks of the appropriate sub-queue, and
the task with the highest priority level will be serviced first. This type of task
priority structure could ensure that high priority communication (or monitor-
ing) tasks do not wait in the queue for the completion of low priority control or
monitoring tasks. The priority coefficients of sub-queues can be calibrated using
data from pilot tests. Furthermore, some events in the queue might be depen-
dent, i.e., servicing one event will require the dependent event to be serviced as
well. It is possible that events across different sub-queues can be dependent as
well. For example, in a certain situation it might be required to communicate
with a command center and simultaneously control the aircraft.

5.6 Service Processes

Service times represent the time that the operator is required to interact with
an event. The service times module of the model is shown in Figure 11. The
service times can be uniform or of random nature. In the latter case, they are
usually characterized by a probability distribution function. Each event type can
have its associated service distribution, which captures the variability of a single
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Figure 12: The human operator component of the operator model.

operator servicing tasks, as well as variability between operators. Occasionally,
service distributions are non-stationary and can change over time. To account
for the change in service times over time, the parameters describing the service
time distribution can be varied over time. Furthermore, if the variability of
service times over time is so large that it cannot be accounted for using the same
service distribution, another service distribution can be utilized to accurately
characterize the variation of service times.

Servicing an event can have a further impact on the state of the system.
First, it can unblock other events, and, secondly, it can trigger other events.
Not servicing an event can also have a profound impact on the system, since
some of the events that are not serviced expire and leave the system without
being serviced. This can lower the efficiency and performance of any system. It
is also possible that an unserviced event can stay in the system and dramatically
increase the number of events waiting to be serviced.

5.7 Human Operator

The human operator is represented by various constructs shown in Figure 12.
More specifically, experience level, wait times due to attention inefficiencies
(WTALI), operator error rates, and event servers represent the human opera-
tor. The concept of wait times due to attention inefficiencies (WTAI) has been
previously used to model the performance of UV operators [6] [13]. WTAI rep-
resents the effects of low situation awareness on task wait times. Previously, it
has been used in conjunction with the busyness level of operators to account for
additional delays in servicing events [12]. More specifically, it was assumed that
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the wait time is the greatest when the operator is either very busy or is almost
idle. The wait time is the shortest when the operator is moderately busy. The
WTAI concept can be used in the new model in conjunction with the level of
experience of operators. Specifically, the dependency between the wait time and
utilization will change based on the operator experience level.

5.8 Error Rates

Operator error rates are also taken into account. Specifically, according to the
action classification of errors, omission and commission errors are considered.
During an omission error, the event is delayed until it expires or an event of the
same type is created. During a commission error, the wrong action is taken.
In the model, omission errors are taken into account by the fact that some
events expire if they stay in the queue longer than a predetermined amount of
time. Also, events might stay in the queue until the end of the mission without
being serviced. WTAI and inefficient queuing policies can contribute to omission
errors, since servicing only one type of event for a prolonged period might cause
other types of events to time out. Also, WTAI can introduce additional delays,
which might result in event time-outs.

Commission errors account for events that are serviced but with the wrong
outcome. Commission error rates can be found from previous HAL studies.
Also, data from US military unmanned vehicle mishaps and US naval aviation
post-accident data can be used to extract information about commission error
rates. However, the reported commission error rates represent average values for
a given period and do not take into account pilot experience, which is likely to
have a significant impact on the error rates. Operators’ attention inefficiencies
also influence commission error rates, hence, we propose to use the WTAI value
as a multiplier in determining commission error rate, i.e., P(error) = a-WTAI,
where « is a normalizing factor taking into account the average error rate that
can be found from the literature. This definition of commission error rates also
takes into account pilot experience, since WTAI curves vary for different levels
of experience.

5.9 Multi-tasking

To account for multi-tasking abilities of the human operator, each type of task
has an associated demand level, which is assigned by the experimenter / model
designer. This is similar to Wickens’ attempt to model dual-task performance
by assigning a demand value for each information processing stage for different
tasks and calculating dual-task interference values. The way to best represent
multitasking in the model is still under investigation.

Operator inefficient task switching can contribute to lowered performance.
For example, the operator can overly concentrate on servicing one type of task
(e.g., control tasks) and ignore servicing other tasks for some period (cognitive
lockup), even though the demand threshold hasn’t been reached. Alternatively,
the operator can choose to service the task with lower priority, ignoring the high
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priority task. To account for inefficient switching (which depends on operator
experience and level of attention inefficiencies), inefficient switching probability
can be used in combination with the WTAI value, e.g., P(sWepror) = v- WTAI,
where v is a normalizing constant coefficient. P(swerrorr) represents the proba-
bility of not switching according to the priority levels (as described above).

5.10 Task-based Versus Vehicle-based UAV Control

In modeling task-based versus vehicle-based control, the arrival rate probabil-
ity density functions, as well as service time distributions can be significantly
different. More specifically, the nature of tasks that operators perform is differ-
ent. For example, in vehicle-based control, operators are required to control the
vehicles to direct them to the required locations. Occasionally, operators might
be required to direct the vehicles away from threat areas and closer to the area
that needs to be searched. Also, various characteristics (e.g., speed, endurance,
maneuverability, etc.) of different unmanned vehicles might require operators
to interact with vehicles more or less. Increasing the number and heterogeneity
of vehicles can quickly overload the operator, since each individual vehicle needs
to be controlled by the operator.

In a system with a task-based architecture, the operator does not directly
control the vehicles and, generally, is not concerned with the speed, endurance,
or other characteristics of the vehicles. The operator supervises the tasks that
need to be accomplished, which, in turn, dictate the behavior of the vehicles.
Thus, increasing the number or heterogeneity of vehicles in a task-based ar-
chitecture should not increase the operator’s workload, unless the additional
vehicles make it easier and faster to find additional targets, which require oper-
ator assistance. However, even if operator workload increases, it should increase
much less compared to the vehicle-based control scenario.

To conclude, the main differences between modeling task-based and vehicle-
based control scenarios are input probability distribution functions that describe
various event arrival rates and service times. Also, dependencies of tasks on
other tasks will be different. At the same time, the level of attention resources
required to complete the tasks in a vehicle-based scheme might be different
from the resources required in a task-based scheme. More work still needs to
be done to use the level of centralization/decentralization as a parameter in
the model. However, it is clear that using such a parameter is contingent upon
having excellent knowledge about the differences of task-based and vehicle-based
control for a specific interface.

One way it might be possible to take the level of task-based and vehicle-
based control into account in a DES model is to convert task-based events into
vehicle-based events. More specifically, if the probability distribution functions
of event arrivals are given for a task-based system, these event arrivals can
be converted to vehicle based event arrivals, with different arrival rates and,
potentially, different service times. For example, an arrival of a search task
creation event in a task-based control system might be equivalent to the arrival
of multiple events setting a vehicle’s next location in a vehicle-based control
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system.

5.11 DES Model Inputs and Outputs
5.11.1 Inputs

e Probability density functions of system-generated events
e Probability density functions of operator-generated events
e Probability density functions of environmental events

e Probability density functions of service time distributions
e Queuing policies

e Dependencies between tasks

e A categorization of tasks into communication, motor, and monitoring task
types

e Attention resources required to perform each type of task

e Operator error rates

Probability density functions of arrival rates and services times for the un-
manned aircraft system can be extracted from previously conducted studies
which are being modeled. For the optionally piloted aircraft, CTA can be used
to gather task arrival times. The queuing policy that operators utilize can be
extracted from previous experiments and implemented in the model. Also, the
queuing policy can be changed to evaluate the impact on system performance.
The dependency between tasks can be modeled for each mission scenario by
knowing how the actual system operates. Categorization of tasks based on mo-
tor, monitoring, and communication tasks correspond to aviate, navigate, and
communicate task classification in aviation domain. Hence, this categorization
can be found from previous studies.

For the unmanned vehicle system, the designer of the model can indicate
task categories. However, it should be mentioned that a majority of the in-
terfaces for unmanned vehicles only have tasks that correspond to the motor
classification, since operators need to point and click to command the vehicles,
and communication with the command center is usually established via chat
messages. The level of attention resources required to service each type of task
can be estimated by the designer of the system, in consultation with pilots.

Operator omission and commission error rates will be estimated as a range
of possible outcomes linked to workload and attention inefficiencies. The data
from US military unmanned vehicle mishaps can also be used extract informa-
tion about the rate of operator error [20]. US naval aviation post-accident data
analysis can also be used as a source of pilot error rates [19].
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5.11.2 Owutputs, DES-Based Metrics
e Utilization

— Average utilization

— Utilization calculated for 1 min, 5 min, 10 min intervals (or any other
interval)

e Event wait time in the queue

— Average event wait time in the queue
— Maximum event wait time in the queue

— Wait time for specific types of events can also be measured

Event time-out rate

— Overall time out rate

— Time out rate for specific types of events

Number of tasks completed

— Number of overall tasks completed

— Number of specific tasks completed

5.12 Mission-specific Metrics

Mission-specific metrics are designed to capture the performance of operators
during a specific mission environment. For example, when the mission requires
identification of friendly or hostile targets, a mission-specific metric can be the
percentage of correct identifications. In another example, when an operator
needs to destroy enemy targets, a mission specific metric can be the correct and
timely destruction of the targets.

All of the DES-based metrics can be extracted from the queue and the
server. More specifically, average utilization and peak utilization are output
directly from the server. These metrics are influenced by the input probability
distribution functions, as well as inter-dependencies between tasks. The level
of attention resources required for different tasks will also influence utilization
level. The number of tasks serviced is also directly output by the server. As
previously mentioned, arrival rate distributions of events as well as dependencies
between events will influence the number of tasks that are serviced. Event types
as well as service time distributions also influence the number of serviced tasks.

Event wait time values can be extracted from the queue. The queuing pol-
icy and operators’ multitasking abilities will influence wait times. Arrival rate
distributions and service time distributions will also affect wait times. These
factors also influence event time out rates, which can be obtained from the
queue.

25



Appendix A: Event Flow Diagrams

Figures 13, 14, 15 and 16 show the event flow diagrams for the four mission
phases of MAVIES. Figures 17, 18, 19, and 20 show event flow diagrams for five
additional continuous monitoring tasks that we analyzed as part of the MAVIES
event flow.
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Appendix B: Decision Ladder Diagrams

The full original decision ladder for “Is There a Suitable Initial/Alternative
Route,” is shown in Figure 21. Versions of this decision ladder annotated with
display requirements and automation levels are given in Figures 22 and 23 re-
spectively. The original decision ladder, a display requirements decision ladder,
and an automation-level annotated decision ladder for “Is Identified Site Safe,”
are shown in Figures 24, 25 and 26.
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Figure 24: Original decision ladder for “Is Identified Site Safe?”
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Figure 25: Decision ladder with display requirements for “Is Identified Site
Safe?”

40



Figure 26: Decision ladder with automation level annotations for “Is Identified
Site Safe?”
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Appendix C: Situation Awareness Requirements

The situation awareness requirements generated from the hCTA process for the
phases Takeoff, En Route, Insertion-FExtraction, Return to Base; and the mon-

itoring tasks Track, Identify, and Destroy Hostile Targets, and Vehicle Health
Status are given on the following 6 pages.
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Phase

SAR

Level | (Perception)

Level Il (Comprehension)

Level Il (Projection)

Takeoff

Visual and auditory feedback that
SUAV(s) have taken off (P1)

Visual feedback of the routes found by
the SUAV(s) and their characteristics
(number of hostiles, weather
conditions, obstacles) (L1, P2)

Visual feedback of landing sites found
by the SUAV(s) and their
characteristics (number of hostiles,
weather conditions, terrain conditions,
visibility level and obstacles) (L2, P3)

Visual feedbacknof the weather
conditions at the base (cloud ceiling
level, visibility level, existence and
strength of storms, temperature) (D3)

Visual and auditory feedback of the
status of CUAV (engines, computers,
electronics, brakes, flaps, oil and fuel
level) for takeoff (D3)

Visual and auditory feedback that
CUAV has taken off (P5)

SUAV(s) successfully took off (P1)
SUAV(s)’s take off is delayed (P1)

Suitable routes found by SUAV(s) for
CUAV (P2, DL1)

Suitable landing sites found by SUAV(s)
for CUAV (P3, DL2)

Weather condition acceptable for CUAV
takeoff (D3)

Weather conditions not acceptable for
CUAV takeoff (D3)

CUAV’s condition acceptable for takeoff
(B3)

CUAV’s condition not acceptable for
takeoff (D3)

CUAV successfully took off (P5)

CUAV'’s take off is delayed (P5)

Impact of a delay in
SUAV(s)’s take off on
schedule (P1)

Impact of a delay in CUAV
takeoff on schedule (D3)

Impact of a delay in CUAV
takeoff on schedule (P4)

Impact of a delay in CUAV
takeoff on schedule (P5)




Phase

SAR

Level | (Perception)

Level Il (Comprehension)

Level Il (Projection)

En Route

~

[ee]

©

10

11

12

13

14

Visual and auditory feedback of the
number of escorts needed by CUAV
(D4)

Visual feedback of position of CUAV
while en route to landing site (P6)

Visual feedback of positions of
SUAV(s) while en route to the base
(P7)

Visual feedback of positions of
SUAV(s) and CUAV while en route to
landing site (P8)

Visual feedback of route safety
(number of hostiles and movement,
weather conditions, obstacles) during
CUAV traversal (L3, P9)

Visual feedback of the alternative safe
routes found by the SUAV(s) and their
characteristics (number of hostiles,
weather conditions, obstacles) (L4,
P10)

Visual feedback of positions of
SUAV(s) and CUAV on the current
route (P11)

Visual and auditory feedback of the
arrival of vehicles at the landing site
(P12)

CUAV needs escorts (D4)

CUAYV does not need escorts (D4)
Position and movement of CUAV (P6)

Position and movement of SUAV(s)
(P7)

Position and movement of CUAV and
SUAV(s) (P8)

Current route safe (P9, DL1)
Current route compromised (P9, DL1)

Available alternative suitable routes for
CUAV (P10, DL1)

No available suitable route for CUAV
(P10, DL1)

Position and movement of the vehicles
(P11)

Vehicles arrived at the landing site in
time (P12)

Vehicles have not reach the landing site
in time (P12)

Changes on schedule
according to the new
SUAV(s)’s assignment (D4)

Estimated distance and time
to reach the landing site
(P6)

Estimated distance and time
to reach the base (P7)

Estimated distance and time
to reach the landing site
(P8)

Impact of the unsafe route
on schedule (P11)

Changes on schedule based
on the characteristics of the
new suitable route (P11)

Continue search for suitable
routes (P10, DL1)

Distance and time to reach
the landing site (P11)

Impact of a delay in CUAV
and SUAV(s) travel on
schedule (P12)




Phase

Insertion/
Extraction

SAR

16

17

18

19

20

21

22

23

24

25

Level | (Perception)

Visual feedback of the characteristics
of the landing site (number of hostiles,
weather conditions, terrain conditions,
visibility level, obstacles) (D7)

Visual and auditory feedback that
CUAV has landed (P15)

Visual feedback of return routes found
by SUAV(s) and their characteristics
(number of hostiles, weather
conditions, obstacles) (L5, P16)

Visual and auditory feedback of the
status (time spent and remaining, the
number and characteristics of
remaining tasks) of on/off loading
to/from CUAV (P17)

Visual feedback of the weather
conditions for takeoff (cloud ceiling
level, visibility level, existence and
strength of storms) (D9)

Visual feedback of the status of CUAV
for takeoff (engines, computers,
electronics, brakes, flaps, oil and fuel
level) (D9)

Visual and auditory feedback that
CUAV has taken off (P19)

Visual and auditory feedback of the
number of escort(s) needed by CUAV
during route traversal (D10)

Visual feedback of position of CUAV
while en route to the base (P20)

Visual feedback of positions of
SUAV(s) and CUAV while en route to
the base (P21)

Level Il (Comprehension)
Landing site acceptable for CUAV (D7)

Landing site not acceptable for CUAV
(D7)

CUAV successfully landed (P15)
CUAV did not land in the site in time

(P15)

Suitable return routes found by
SUAV(s) for CUAV (P16)

On/off loading to/from CUAV is done in
the scheduled time (P17)

On/off loading to/from CUAV is not
done in the scheduled time (P17)

Weather condition are acceptable for
CUAV takeoff (D9)

Weather condition are not acceptable
for CUAV takeoff (D9)

CUAV’s condition are acceptable for
takeoff (D9)

CUAV’s condition are not acceptable for
takeoff (D9)

CUAV successfully took off (P19)
CUAV did not take off in time (P19)

CUAV needs escorts (D10)

CUAV does not need escorts (D10)

Position and movement of CUAV (P20)

Position and movement of CUAV and
SUAV(s) (P21)

Level Il (Projection)

Impact of waiting for better
landing conditions on
schedule (P14)

Impact of a delay in CUAV'’s
landing on schedule (P15)

Impact of a delay in the
on/off loading to/from CUAV
on schedule (P17)

Impact of a delay in CUAV
takeoff on schedule (P18)

Impact of a delay in CUAV
takeoff on schedule (P18)

Impact of a delay in CUAV
take off on schedule (P19)

Changes on schedule
according to the new
SUAV(s)’'s assignment
(D10)

Estimated distance and time
to reach the base (P20)

Estimated distance and time
to reach the base (P21)




Phase

SAR

Level | (Perception)

Level Il (Comprehension)

Level Il (Projection)

Return to
Base

2

[22]

27

28

29

30

31

32

33

34

Visual feedback of route safety
(hostile movement, weather conditions
and obstacle) during CUAV traversal
(L6, P22)

Visual feedback of the alternative
routes found by the SUAV(s) and their
characteristics (number of hostiles,
weather conditions, obstacles) (L7,
P23)

Visual feedback of positions of
SUAV(s) and CUAV on new route
(P24)

Visual and auditory feedback of the
arrival of vehicles at the landing site
(P25)

Visual feedback of the weather
conditions for landing (cloud ceiling
level, visibility level, existence and
strength of storms) (D13)

Visual feedback of the alternative
landing sites found by the SUAV(s)
and their characteristics (number of
hostiles, weather conditions, terrain
conditions, visibility level, obstacles)
(D14)

Visual feedback of positions of CUAV
and SUAV(s) while en route to the
new landing site (P27)

Visual and auditory feedback that
CUAYV and SUAV(s) have landed
(P28)

Visual feedback of the analysis of
mission (success of
insertion/extraction within required
time, number and severity of damaged
vehicles, number and severity of
human injuries) (P29)

Current route is safe (P22, DL1)

Current route compromised (P22, DL1)

Available alternative suitable routes for
CUAV (P23, DL1)

No available suitable route (P23, DL1)

Position and movement of the vehicles
(P24)

Vehicles arrived at the landing site in
time (P25)

Vehicles did not reach the landing site
in time (P25)

Weather condition is acceptable for
CUAV landing (D13)

Weather condition is not acceptable for
CUAV landing (D13)

Available alternative landing sites for
CUAV and SUAV(s) (D14, DL2)

No available alternative landing sites for
CUAV and SUAV(s) (D14, DL2)

Position and movement of vehicle (P27)

CUAV successfully landed (P28)
CUAV did not land in time (P28)

Mission completed with success (P29)

Mission was not completed with
success (P29)

Impact of the unsafe route
on schedule (P24)

Changes on schedule based
on the characteristics of the
new suitable route (P24)

Continue search for suitable
routes (P23, DL1)

Estimated distance and time
to reach the landing site
(P24)

Impact of a delay in
vehicles’ travel on schedule

Impact of a delay in CUAV
landing on schedule (P26)

Changes on schedule based
on the characteristics of the
new suitable route (P27)

Changes on schedule based
on the wait for the conditions
to better (P26)

Estimated distance and time
to reach the landing site
(P27)

Impact of a delay of CUAV
landing on schedule (P28)




Phase SAR Level | (Perception) Level Il (Comprehension) Level Il (Projection)
#
Visual and auditory feedback of the . . . Impact of tracking the
: Potential targets in the surrounding area .
search area and the potential targets (L8) potential targets on
35((L8, P30) schedule (P31)
No potential targets in the surrounding
area (L8)
36|Video footage of the target being Position and movement of the target Future position of the target
tracked and visual feedback of its being tracked (P31) being tracked (P31)
characteristics (position, speed,
nationality, weapon capability) (P31)
Targets identified as hostile (P32) Impact of changing the list of
4| Visual or auditory feedback of the hostile targets (P33)
identification of the target (D15) Target identified as neutral (P32)
Identify, Target identified as friendly (P32)
track and Visual feedback of the ordered list of [List of hostile targets ordered according
destroy hostile targets and requirements for  |to requirements (P33)
hostile 38|prioritizing (hostile target posit_ion, _ List of hostile targets in not order Impact of reordering list of
targets speed, weapon capability, nationality) |according to requirements (P33) hostile targets (P33)

39

40

41

(P33)

Visual feedback of hostile target with

the highest priority and its

characteristics (position, speed,
weapon capability, nationality) (L9,

P34)

Video feed of the hostile target after

the attack (D16)

Visual feedback of remaining hostile

targets and requirements for
prioritizing (D17)

Hostile target ready for engagement
(L9)

Hostile target is not ready for
engagement (L9)
Hostile target was destroyed (D16)

Hostile target was not destroyed (D16)

List of hostile targets ordered according
to requirements (D17)

List of hostile targets in not order
according to requirements (D17)

Impact of firing the hostile
target (P35)

Impact of continuing hostile
target monitoring (L9)

Impact of continuing the
attack (P35)

Impact of reordering list of
hostile targets (P33)




Phase

SAR

Level | (Perception)

Level Il (Comprehension)

Level Il (Projection)

Vehicle
Health and
Status

42

43

44

45

46

47

48

49

50

Visual feedback of current fuel level
(L10)

Visualy feedback of aircraft capability
for inflight refueling (D18)

Visual feedback of weather status
(cloud ceiling level, visibility level,
existence and strength of storms,
temperature) (L11, P39)

Visual of status of vehicles' vitals
(engines, computers, electronics,
brakes, flaps, oil level, fuel mixture)
(L12, P41)

Visual or auditory feedback of alerts
and warnings about vehicle vitals
(engines, computers, electronics,
brakes, flaps, oil level, fuel mixture)
(P42)

Visual feedback of the status of the
errors about vehicle vitals (engines,
computers, electronics, brakes, flaps,
oil level, fuel mixture) (D19)

Visual feedback of GPS signal
strength (L13, P44)

Visual and auditory feedback of the
communication between the vehicles
and the base (L14, P46, D21)

Visual indication of the strength of the
communication links between vehicles
and base (D20)

Fuel level is sufficient for the completing
the mission (P36)

Fuel level is not sufficient for the
completing the mission

Aircraft is capable to do inflight refueling
(P38)

Aircraft is not capable to do inflight
refueling (P37)

Vehicle is capable to fly in the weather
condition (L11)

Vehicle is not capable to fly in the
weather condition (L11)

Vehicle is in good flight condition (L12)

Vehicle is not in good flight condition
(L12)

Recognition of the existence errors and
their severity (P42)

Error fixed (D19)
Error not fixed (D19)

GPS signal exist (L13)

GPS signal does not exist or is too
weak (L13)

Messages are received and sent (L14,
D21)

No message are received or sent (L14,
D21)

Heartbeats are received and sent (D20)

No heartbeats are received and sent
(D20)

Impact of changing schedule
according to refueling needs
(D18)

Impact of changing schedule
according to refueling
possibilities (P37, P38)

Impact of changing schedule
according to refueling
possibilities (P37, P38)

Impact of mission abortion
(P40)

Impact of error
troubleshooting P42)

Impact of error
troubleshooting (P42)

Impact of mission abortion
(P43)

Impact of changing path to
find better GPS (P45)

Impact of executing
contingency plan (P47)

Impact of executing
contingency plan (P47)




Appendix D: Storyboards and Cognitive Walk-
through

Storyboards for the interface design which were also used to perform a cognitive
walkthrough exercise with test pilots at Sikorsky are given in the following 62

pages.
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‘Cognitive Walkthrough

“Quick and dirty” usability testing

“The Cognitive Walkthrough has proven to
be a robust method that gives good results if
not taken too seriously.” clayton Lewis

1) The user sets a (sub)goal to be accomplished with the
system.

2) The user searches the interface for currently available
actions (menu items, buttons, command-line inputs, etc.).

3) The user selects the action that seems likely to make
progress toward the goal.

4) The user performs the selected action and evaluates the
system's feedback for evidence that progress is being made
toward the current goal.
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