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Abstract—We perform real-world tests of the performance
of medium access control protocol schemes for scalable data
aggregation in sensor networks. Specifically, we evaluate the
performance of a Listen-and-Suppress Carrier Sense Multiple
Access (LAS-CSMA) scheme on the duplicate-insensitive exem-
plary monotonic aggregates MAX and MIN. These schemes
reduce power consumption, network bandwidth usage and
delays by suppressing node packet transmissions that are
proven to be unnecessary in the query response. This is possible
when nodes listen to the transmissions of other nodes as they
respond.

Scalability tests were performed for 8 networks of various
sizes, the largest having 24 Crossbow IRIS wireless mote
modules as data nodes. We found that for the largest networks,
packet transmissions, receptions, and response delays were
reduced 44%, 65%, and 38% respectively. Packet transmissions
and response delays were found to scale nearly logarithmically
with respect to the size of the network, which resembles predic-
tions by recent theoretical results. However, the consumption of
energy and network resources is further reduced in platforms
with better software implementations and hardware support
for the TinyOS Active Messages interface. It is found that the
scalability and performance of LAS-CSMA depends strongly
on how quickly nodes can cancel a pending packet transmission
based on a calculation with data from an incoming packet.

Keywords-In-Network Data Aggregation; Medium Access
Control; Scalability; Wireless Sensor Networks.

I. INTRODUCTION

As networked embedded mote modules continue to di-
minish in size and cost, the interest increases in the de-
sign of protocols, hardware and software components, and
applications for networked embedded systems. The use of
wireless communication links and the addition of sensing
and actuation devices has encouraged their use in many
domains such as environmental and medical monitoring,
habitat monitoring, and participatory urban sensing.

These networked embedded systems are usually battery
powered, and may be limited in other respects. The radio
transceiver often dominates the power dissipation charac-
teristics of the system, and many of these systems are
constrained in their available communication bandwidth.

Overall, the system must use the radio transceiver carefully
to achieve good performance and lifetime from the system.

Wireless sensor networks nearly always have only a small
subset of base station nodes that are connected to a host
computer or wider area network. Therefore, for operations
in which all nodes take part, for example, sensor data
collection or actuation command distribution, the broadcast
and “convergecast” patterns of communication are most
common. Data aggregation techniques seek to optimize the
system for these patterns of communication.

One objective in data aggregation system design is
scalability–assuring that nodes can be added to the net-
work without significantly degrading performance or without
straining scarce resources. When monitoring or sensing
networks collect data, often only a summary or cross-section
of data is required. Data aggregation techniques can use
the fact that not all of the data is needed and try to save
resources.

A. MAC Protocols

Constraints important to sensor and actuation networks
present challenges at all layers of network design. How-
ever, when issues such as transceiver power consumption
and network fairness, delay, and throughput are of import,
controlling access to the communication medium is most
essential. The traffic created by these networks exhibits
patterns that are aren’t very well addressed by general
purpose medium access control protocols. The exploitation
of predictable network traffic patterns to extend network
lifetime and increase reliability and efficiency is the aim
of research of MAC protocols for sensor networks.

In this paper, we evaluate the performance of contention
based medium access control schemes for data collection
in sensor networks. In particular, we study Listen-And-
Suppress (LAS) CSMA as introduced in [1]. We choose
the LAS-CSMA scheme because of its ease of implementa-
tion and generality. Under LAS-CSMA nodes listen to the
channel and avoid transmitting and sleep if their data is not
needed.



We compare the performance of data aggregation with
and without the LAS-CSMA protocol concept. We measure
the query completion delay, number of transmissions, and
number of receptions for networks of various sizes between
1 and 24 data nodes. The power dissipation of executing
queries can be examined by considering the average total
number of transmissions made or attempted by all data nodes
in the network. For many types of networks listening time
is more strongly correlated to node power consumption, so
we measure the collective average time that nodes spend
listening to the network during the query process.

II. PREVIOUS WORK

The TinyDB query processing framework was introduced
in [2] and measurements of the power consumption profile
of the query execution and processing framework are given
in [3]. The TAG system’s snooping based techniques are
reminiscent of LAS-CSMA, but are not approached at the
MAC level.

Cougar is another query processing framework that, sim-
ilar to TinyDB, has a declarative syntax language based
interface. In [4] the interaction between Cougar’s query
and network layers is simulated using the ns-2 network
simulator. The simulation includes 802.11 MAC layer colli-
sions and gives the per-node energy dissipation for different
network topologies and query operator selectivities.

Most evaluations of the MAC performance of data ac-
quisition systems are performed in network simulation. In
[5] Q-MAC a new sleep schedule for query based sensor
networks is proposed that provides minimum end-to-end
latency with energy efficient data transmission. Its perfor-
mance is evaluated with the Glomosim simulator.

DMAC [6] is a low-latency energy efficient MAC de-
signed for data aggregation in unidirectional trees of nodes.
In networks with sleep/wake cycles it is designed to prevent
the increased latency of data forwarding due to sleep delay.
Its performance was evaluated with ns-2 using the CMU
wireless extension. However, ns-2 may not account for dif-
fering transceiver chips, their MAC logic and the associated
drivers.

Occasionally sensor database query processing systems
are evaluated by performing simulations using real data sets
acquired without the query processing system (in [7] for
instance). In this paper we focus on a generalized protocol
paradigm which was simple to implement at the application
level of most wireless sensor networks, and evaluate its
scalability and performance experimentally.

III. BACKGROUND

A. Scalable Data Aggregation

In our experiments we perform a real-world test of the
performance of medium access control protocol schemes
for data aggregation. Specifically we test the performance
of a Listen-and-Suppress Carrier Sense Multiple Access

(LAS-CSMA) scheme on the duplicate-insensitive exem-
plary monotonic aggregates MAX and MIN. LAS-CSMA
[1] reduces power consumption, network bandwidth usage,
and delays by suppressing node transmissions that are
proven to be excluded from the query response.

In a real data aggregation network, a node (usually the
base station node) issues a query by sending an appropriate
query packet on the network. The query reaches all associ-
ated data nodes either by broadcast or through forwarding.
Each data node responds by sending its records needed to
satisfy the query, but while attempting to send, each data
node listens to the other records that appear on the network.
Because duplicate-insensitive exemplary monotonic queries
request only the extreme (maximum or minimum) record
of all records existing on the data nodes, a data node can
suppress its transmission if it hears a record that is more
extreme from its own.

For example, assume that each of 6 stations has a single
integer in storage, and that the query requests the single
greatest integer value. If the values stored among the data
nodes are the integers 2, 5, 7, 8, 11, 13 and the integer
8 is successfully transmitted before the data nodes storing
2 and 7 are able to transmit, these data nodes can cancel
their transmissions, even if one of their attempts to transmit
resulted in a collision. This reduces the contention for the
network, making it easier for the data nodes that store 11
and 13 to transmit.

Macbeth and Sarrafzadeh [1] study the characteristics of
medium access control for scalable data aggregation. They
characterize the scheduling of packets sent in response to
a data aggregation query as a Poisson process with rate g.
They analyze CSMA/CD, which differs only slightly from
the CSMA/CA used in IEEE 802.15.4.

They find that for a fully-connected network of n data
nodes, the expected delay, transmissions, and slots spent
listening are, respectively:

E[Delay(n)] ' THn

SCSMA

E[Trans(n)] ' THne
gτ

E[Listens(n)] ' T

SCSMA
O(n).

(1)

where SCSMA is the throughput, T is the response packet
length, and τ is the maximum propagation delay between
any two nodes. Hn denotes the nth Harmonic Number, and
it is O(lg n).

IV. EXPERIMENTAL PLATFORM

A. Hardware

Two sets of experiments were performed using two types
of mote modules. The first uses the Crossbow IRIS mote



module, also called the XM2110CA [8]. The IRIS platform
is intended to enable wireless low-power sensor networks
and is based on an Atmel ATmega1281 8 bit microcontroller
with a clock speed of 7.37 MHz and 128Kb of program
memory. Its RF radio transceiver is the IEEE 802.15.4
compliant Atmel RF230 [9], with a data rate of 250 Kbps
in the ISM band, 2.4 to 2.48 GHz.

The second set of experiments uses the Crossbow MICAz,
also known as the MPR2400 [8]. The MICAz is based on an
Atmel ATmega128L microcontroller, also at 7.37 MHz with
128Kb of program memory. However, differing from the
IRIS, MICAz uses the Chipcon CC2420 802.15.4 compliant
RF transceiver [10]. Like the RF230, the CC2420 operates
in the 2.4 to 2.48 GHz band with a data rate of 250 Kbps.
We chose the IRIS and MICAz motes because of their
wide popularity and extensive use in the sensor network
community.

For the IRIS mote experiments a variable number of
Crossbow IRIS Motes were arranged in close proximity as
data nodes, and one more IRIS Mote acts as a base station
while connected to the Crossbow MIB520 USB interface
board. The data nodes and base station were all placed
side by side on a small workbench so that each pair of
nodes would be well in transmission range. This fully-
connected broadcast network topology can be represented
by a complete graph, which is most appropriate for a
performance evaluation of medium access control.

A similar arrangement was used for the MICAz experi-
ments. Both the IRIS and MICAz are designed for battery
power (2 AA batteries) and we use battery power for all
motes except the base station. The base station is powered
through the MIB520.

B. Software

The motes in our experiment run TinyOS [11], an open-
source component-based operating system designed for
wireless embedded sensor networks. At the time of this
writing only the CVS version of TinyOS 2.x (version 2.0.2)
has compiler and programming support for the Crossbow
IRIS. TinyOS and applications running under TinyOS are
written in a special programming language for networked
embedded systems called NesC [12].

Typically, programming the motes is performed by con-
necting directly via the mote’s 51 pin port to the MIB520
USB gateway. Alternatively, motes can be reprogrammed
over the network using Deluge [13], a dissemination protocol
for large data objects. Motes are individually programmed
with a Deluge bootloader image that can receive a program
binary wirelessly. The program binary image is broadcast
by the base station mote, and the 24 other nodes retrieve
the application binary and reboot with that image. We chose
this method because it saves us from having to program
each mote by hand in each phase of development and
experimentation.

C. TinyOS Active Messages

TinyOS has a simple event-based paradigm for wire-
less communication between nodes called Active Messages
[14] [15]. The Active Message (AM) model matches its
communication primitives with the constrained hardware
environment of embedded networked systems. Its program-
ming interface allows for the overlap and integration of
communication and computation, which is indispensable for
efficient in-network data aggregation in sensor networks.
It also allows multiple applications to simultaneously use
communication resources. TinyOS’s Active Message model
presents the API given in Figure 1.

Using a message_t object, the API allows one get a
pointer to the message payload, and, subsequently, to send
a message containing that payload to another node, or to the
broadcast address. The send method returns a SUCCESS
error code if a send operation was successfully initiated.
The API is asynchronous and event-based, and once the
send operation is completed, the component will receive the
sendDone event with an error code indicating success or
failure.

In between the return of a call to send and the reception
of a sendDone event, the application can call cancel
and attempt to cancel the last initiated send operation. The
cancel method returns a SUCCESS error code if the
transmission was canceled properly (i.e. the message was
not sent in its entirety). The cancel method returns FAIL
if the attempt to cancel was not successful. This means that
the send will continue, but does not guarantee that it won’t
fail. A successful call to cancel should always result in a
sendDone event with a FAIL error code indicating send
failure.

The performance of scalable in-network data aggrega-
tion weighs heavily on the ability of a station to cancel
a transmission. After hearing the query packet, a station
will attempt to transmit while listening to the channel for
other stations transmissions. If the channel is busy and the
transmission is rescheduled, a packet may arrive that allows
the station to suppress its transmission through cancellation.
Alternately, if there is an attempt to transmit and the
sendDone event occurs with a FAIL error code, the code
suppresses transmission simply by not retrying the send
method.

V. EXPERIMENTAL PROCEDURE

We perform experiments on a simplified scalable data ag-
gregation system similar to that listed above. Each iteration
of the experiment is performed with the following steps:

1) The base station node sends a packet to the broadcast
address with a bit pattern indicating that it is a query
packet.

2) Each of the data nodes, upon receiving the query
packet, randomly generates an 8 bit unsigned integer.



i n t e r f a c e AMSend {
command e r r o r t send ( am addr t addr , message t ∗ msg , u i n t 8 t l e n ) ;
command e r r o r t c a n c e l ( message t ∗ msg ) ;
e v e n t void sendDone ( message t ∗ msg , e r r o r t e r r o r ) ;
command u i n t 8 t maxPayloadLength ( ) ;
command void ∗ g e t P a y l o a d ( message t ∗ msg , u i n t 8 t l e n ) ;

}
i n t e r f a c e Rece ive {

e v e n t message t ∗ r e c e i v e ( message t ∗ msg , void ∗ pay load , u i n t 8 t l e n ) ;
}

Figure 1. The TinyOS Active Message Interface

3) Each data node then attempts to send a packet with this
integer in the payload to the broadcast address along
with a pattern to indicate that it is part of the query
response. This transmission may not be successful
depending on channel contention.

4) Concurrent with the attempts to send the packet,
each data node also listens to successful transmissions
performed on the channel.

5) If a data node receives a query response packet from
another data node with a greater integer payload and
has not yet completed its own transmission, it attempts
to cancel its transmission.

6) After transmitting the query, the base station node
waits for 3 seconds to receive query response trans-
missions from the data nodes.

7) The base station records the time elapsed between the
transmission of the query packet and its receipt of
the last query response packet. This will be called the
query response delay.

A simplified representation of the code for the TinyOS
scalable data aggregation test application (without the data
collection framework) is given in Figure 2.

After this first phase is completed, the base station node
executes a second query to collect individual information
from the data nodes about the query execution over the
network. This second query does not use a scalable data
aggregation medium access scheme. It consists of the fol-
lowing steps:

1) The base station node prepares a packet with a special
data pattern to indicate that it is a “meta-query” for
data about the execution of the previous query

2) The base station iterates over the set of data nodes
performing the following two steps

a) It sends the “meta-query” packet to the data node
individually.

b) It sets a short timer to wait for the response.

3) Each data node responds with the following:

a) Its node ID

b) The stored integer from the query-response ex-
periment just performed,

c) A bit indicate whether or not the data node
performed a successful transmission,

d) An 8 bit integer indicating how many records it
received from other data nodes before making a
successful transmission or suppressing it,

e) A bit indicating whether or not the transmission
was successfully canceled, and

f) A bit indicating whether or not it heard a better
record value from another data node.

To create conditions that might be present in a typical
sensor network data aggregation system, all payloads in our
performance evaluation were 28 bytes.

A. Data Collection

Data is collected using the base station mote and sent to
the host PC using TinyOS’s printf facility. The TinyOS printf
library provides terminal printing functionality to TinyOS
applications through the base station mote connected to a
the PC via USB. The base station TinyOS application’s calls
to printf are sent via USB to a java client application on the
host PC.

The space-delimited data collected on the host PC in-
cludes the query response delay, the final query result, and
the number of packets received by the base station node
during the query response. Also, a line is logged for each
packet received by the base station from the data nodes in
the second phase. These include the data node’s record, a
bit indicating if it made a successful cancel, a bit indicating
if it made a successful transmission, the number of packets
it received from other data nodes before it transmitted or
canceled, and a bit indicating if it heard a better record in a
packet that it received. All lines in the log include a unique
experiment ID.

B. Retries

The TinyOS chip specific code for the Atmel RF230
automatically retries transmissions at the message buffer
layer level. By default it tries to retransmit 4 times if



module S c a l a b l e D a t a A g g T e s t {
u s e s i n t e r f a c e AMSend as AMSender ;
u s e s i n t e r f a c e Rece ive as AMReceiver ;
u s e s i n t e r f a c e P a c k e t ;
u s e s i n t e r f a c e Random ;

}
i m p l e m e n t a t i o n {

message t p a c k e t ;
t a s k void doSend ( ) { send ( ) ; }
void send ( ) {

i f ( ! h e a r d B e t t e r R e s u l t s &&
c a l l AMSender . send (BROADCAST ADDR,

&packe t ,
PACKET LENGTH) != SUCCESS) {

p o s t doSend ( ) ;
}

}
e v e n t void AMSender . sendDone ( message t ∗msg , e r r o r t e r r ) {

i f ( e r r != ECANCEL && e r r != SUCCESS)
p o s t doSend ( ) ;

}
e v e n t message t ∗ AMReceiver . r e c e i v e ( message t ∗msg , void ∗ pay load , u i n t 8 t l e n ) {

u i n t 8 t ∗ r x p a y l o a d p t r = ( u i n t 8 t ∗ ) p a y l o a d ;

i f ( r x p a y l o a d p t r [PACKET TYPE] == QUERY PACKET) {
/ / query p a c k e t
r e c o r d V a l u e = c a l l Random . rand16 ( ) ;
t x p a y l o a d p t r = c a l l P a c k e t . g e t P a y l o a d (& packe t , PACKET LENGTH ) ;
t x p a y l o a d p t r [PACKET TYPE] = RESPONSE PACKET ;
t x p a y l o a d p t r [RECORD VALUE] = r e c o r d V a l u e ;
p o s t doSend ( ) ;

} e l s e i f ( r x p a y l o a d p t r [PACKET TYPE] == RESPONSE PACKET &&
h e a r d B e t t e r R e s u l t s == 0 &&
r x p a y l o a d p t r [RECORD VALUE] >= r e c o r d V a l u e ) {

/ / p a c k e t from a n o t h e r da ta node
h e a r d B e t t e r R e s u l t s ++;
c a l l AMSender . c a n c e l (& p a c k e t ) ;

}
re turn msg ;

}
}

Figure 2. TinyOS Scalable In-network Data Aggregation Test Application

the channel is sensed to be busy, or if there is another
condition to prevent immediate transmission. Because this
occurs at the lower level and the listen and suppress scheme
is implemented at the application level, attempts to cancel
or suppress an attempted transmission upon hearing a trans-
mission from another data node may be difficult depending
on the semantics of cancel and its interaction with the retry
mechanism.

We found that for non-LAS networks, reducing the num-

ber of retries had no significant effects because the higher
level application keeps trying to transmit until there is
success; changing retries at the lower level should make no
difference.

We found that for LAS networks of 24 data nodes,
there was an average of 23.6 transmissions with a standard
deviation of 0.56 when the driver was set to perform 4
retries. We assume that data nodes hear transmissions from
other data nodes but their attempts to cancel transmissions



are unsuccessful, and the driver goes on to retry and perform
an unnecessary transmission. In order to test under favorable
conditions, we chose to set the retries to 0 to make trans-
mission suppression most likely.

C. Broadcasts and Acknowledgement

In our experiments both the data nodes and the base
station node transmit using the broadcast address, which
doesn’t allow for acknowledgment packets. If LAS is used
in a setting where the system can account for a slight error
in the query response, then this is acceptable. Otherwise in
settings where exactness is required, the base station node
can resend the query along with the final received query
result. Then any data nodes could resend their records if
they can improve the result. In this case the base station’s
echo of the query response can act as an acknowledgement.

For LAS networks, data nodes are required to send their
query response packets on the broadcast address in order
for other data nodes to listen. For the non-LAS data nodes
don’t snoop on each other’s transmissions, and this gives us
the choice of using the broadcast address or the base station
address when they send their query response packets.

In evaluating the performance a system without LAS we
chose for data nodes to use the broadcast address in sending
their query response to the base station node. This would
make for a better comparison with LAS without the network
contention due to the base station’s acknowledgement and
retransmission of data node messages that are addressed only
to the base station.

VI. RESULTS

The experimental procedure described above was per-
formed for 60 iterations for each mote network con-
figuration. We performed the experiments for 8 network
configurations consisting of 1, 2, 4, 8, 12, 16, 20 and 24
data nodes and a single base station node. Experiments for
each of the 8 network configurations were performed with
the listen and suppress scheme and without.

Results from our tests with IRIS motes are given in
Figures 3, 4, and 5. The average transmissions, receptions,
and delay, all with standard deviations, are given in Figure 3.
Figure 4 shows the average packets received by the base
station, the average lost transmissions, and the average
cancels, all with standard deviations. Figures 3 and 4 show
scaling plots for 8 network configurations consisting of 1, 2,
4, 8, 12, 16, 20 and 24 data nodes. Figure 5 shows scatter
plots that compare data node transmission and receives and
base station receives for all tests of the 24 data node network.

Figure 3a shows the average total transmissions for 8
networks of different sizes with and without LAS. Without
LAS, all stations successfully transmitted records for all ex-
periments. LAS is seen to significantly reduce transmissions
for the larger networks, and is nearly logarithmic in the size

of the network, in agreement with [1]. For the 24 data node
network, the average transmissions are reduced by 44%.

In Figure 3b the total number of receptions (summed over
all data nodes) is seen to be reduced significantly as well–for
the 24 node network, the reduction is 65%. This is important
because for many embedded systems and devices, as much
or even more energy is expended in receiving messages than
in sending them.

In our experiments, all receptions by a data node are
counted until either the station completes a transmission
or the station hears a result that allows it to suppress its
transmission. This is meant to simulate how in a real system
the data nodes save power by completely shutting down the
radio transceiver when no more transmitting or receiving is
needed for the query. The growth with network size is linear
in agreement with [1].

Before discussing the delay measurements we calculate
the transmission time of data frames in our experimental
arrangement. This calculation doesn’t include other factors
that may contribute to the throughput, like initial and sub-
sequent back-off periods.

Both the CC2420 and the Atmel RF230 support a max-
imum data rate of 250 Kbps. Pessimistically, if we assume
that the maximum number of addressing bits are used in
the IEEE 802.15.4 frame, the length of PPDU frames in our
experimental setup (with a data payload of 28 bytes) is 59
bytes. This gives us a frame transmission time of 1.89 ms.

We observe in Figure 3c that the use of LAS significantly
reduces delay in receiving all packets for the query response.
Delay is measured by the base station (in milliseconds) and
is timed starting just before the transmission of the query
packet and ending at the receipt of the last response packet.
Even without considering the overhead of the query packet
transmission and reception, the delay for the 24 node LAS
network is reduced by 38%. For the LAS paradigm, the
delay appears to be logarithmic with respect to the network
size.

The base station also measures the total number of packets
it receives during the query response phase. This will also
help give an impression about the base station’s energy
consumption due to reception. Many transmissions that
appear to be successful at the sender don’t appear intact
at the receiver. This is presumably due to congestion and
collisions which are very likely just as the query response
begins. Recording the number of transmissions received and
comparing it to the number sent gives us an idea of the
likely extra network traffic due to retries, and of the likely
errors incurred if the system doesn’t use acknowledgement
or retransmission.

In Figure 4a it is seen that LAS reduces the number
of receptions by the base station significantly. But what is
also noticable is the increased number of receptions that are
missed when the system is not using LAS. In Figure 4b a
plot of the difference between data node transmissions and
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base station receptions is given. This represents the packets
that were likely lost due to collisions and may need to be
retransmitted. Very few cancels were successful in our test
with the IRIS motes (Figure 4c). It would seem that most
transmissions were avoided before send was called or after
a failed call to send. This is discussed further below in our
comparison of the IRIS and MICAz mote platforms.

Figures 5a and 5b are scatter plots of delay versus
receptions and delay versus transmissions for a network with
24 data nodes. The results appear to be linear for both LAS
and non-LAS networks, with significantly less transmissions,
receptions and delay for LAS. A similar plot is given for the
receives by the base station. For the non-LAS networks, all
24 data nodes always transmit, accounting for a standard
deviation of 0 for the transmissions.

A. Initial Response Bursts

One phenomenon considered in [1] is the high number of
collisions that occur just following the transmission of the
query packet. In this experiment there is no routing, and all
data nodes are in close proximity to the base station node.
The data nodes have no other processing tasks and identical
hardware, so we expect them all to respond to the query

at the same time, causing many packets in the network to
become ready to transmit at the same instant. This would
cause many or all data nodes to participate in a collision
right at the start of the query response.

IEEE 802.15.4 requires that nodes schedule a packet for
transmission a random time in the future for the first attempt.
This feature allows the system to avoid collisions due to the
initial burst of available packets just after the query packet
is received by all data nodes. As a result we did not observe
major packet collisions due to an initial burst in data node
responses.

B. Comparing IRIS and MICAz

We repeated the LAS versus non-LAS experiments for a
network consisting of 4 MICAz motes. In comparing the 4
data node MICAz network with the 4 data node iris network
we found some dramatic differences. For networks without
LAS, we found again that all data nodes were able to make
a complete transmission in each experiment.

We found that, with the LAS paradigm, there were 39%
less transmissions on average with the MICAz motes than
with the IRIS motes. There were also somewhat less packets
received by the base station node in the MICAz case.
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Figure 5. Transmission and Reception Scatter Plots

Table I
COMPARING IRIS TO MICAZ

Data Nodes TX RX Delay (ms) Base Station RX lost TX Cancels
iris LAS 4 3.49 ± 0.58 3.9 ± 1.0 20 ± 4 3.3 ± 0.6 0.1 ± 0.9 0 ± 0
iris no LAS 4 4 ± 0 5.5 ± 1.0 21.5 ± 4.3 3.79 ± 0.48 0.1 ± 0.7 NA
MICAz LAS 4 2.14 ± 0.82 3.3 ± 0.82 20.3 ± 4.9 1.92 ± 0.66 0.2 ± 1.1 1.82 ± 0.81
MICAz no LAS 4 4 ± 0 5.37 ± 0.90 24.9 ± 3.4 3.58 ± 0.58 0.36 ± 0.79 NA

Without LAS, the results for the MICAz and IRIS were
very similar.

We also note the lack of success data nodes had in
canceling transmissions when records were received from
other data nodes. For networks of 4 data nodes, there were no
successful cancels among the IRIS data nodes in our experi-
ments. The MICAz data nodes had, collectively, 1.82 cancels
per experiment, so that, on average, nearly half of the data
nodes avoided making complete transmissions. Comparing
the lost transmission results to the completed transmission
results, on average only 1% of the transmissions that MICAz
data nodes completed were lost presumably due to collisions.

To learn more about this discrepancy, we studied the
TinyOS Active Message implementations for both the Atmel
RF230 and the Chipcon CC2420, the respective transceiver
chips for the IRIS and MICAz mote platforms. IEEE
802.15.4 requires that nodes perform a clear channel assess-
ment (CCA) operation before attempting to transmit. Both
the RF230 and the CC2420 offer an accelerated atomic-
CCA-and-transmit operation. On the CC2420, this is the de-
fault mode of operation; the Active Message implementation
transfers the data frame to the CC2420 and issues a transmit
command which is ignored if the channel is sensed to be
busy. The transmit command is issued from a state where it
can receive incoming packets and avoid the transmission if
the initial attempt is unsuccessful.

However, the TinyOS RF230 driver uses software CCA
when transmitting data frames. the RF230 driver must, in
software, deal with assessing that there is a clear channel
before making a transmission. This requires setting a sub
register to initiate the clear channel assessment request, read-

ing two other sub registers to determine that the assessment
completed, and the outcome. At this time, if the channel
is sensed to be free, the transmit sequence is begun. The
reception-cancellation process that would help to suppress
the transmission appears to be disabled in this mode of
operation. This would help in explaining how the MICAz
outperforms the IRIS in our tests.

VII. DISCUSSION AND FUTURE WORK

In this work we have demonstrated experimentally the
viability of the listen and suppress paradigm of MAC
protocols for scalable in-network data aggregation. This is
demonstrated for data queries that exhibit a high level of
redundancy. These protocols are shown to have significant
advantages toward scalability when it is gauged by the total
expected number of transmissions and receptions in the
network. The use of these paradigms also reduces the time
needed for query response. All of these characteristics can
be shown to reduce overall power dissipation and bandwidth
usage in the network.

Flexible and efficient implementations of the Active Mes-
sages API reduce transmissions, overhearing and delays in
the query response by receiving other data nodes transmis-
sions and canceling their own if they are determined to
be unneeded. We found that an effective cancel operation
can cause a dramatic improvement in the performance of
in-network data aggregation through the receive-and-cancel
process. It is convenient that Active Messages allow the
network communication and application to overlap and
collaborate so well for the goal of resource conservation
in resource-constrained systems.



In the future we are drawn towards the performance
evaluation and comparison of contention based medium
access with contentionless TDMA-like schemes. A TDMA-
like scheme may be more difficult to use in ad hoc networks,
but theoretically [1] can reduce packet transmissions and
receptions even more dramatically.

Future implementations and experiments will consider the
same problem for multi-hop networks. This raises many
issues for the LAS scheme– most importantly the fact that
many data nodes will be forced to transmit in order for
the needed record to reach the base station node. Effective
routing will be necessary, but in that context we would still
like to consider scalability.
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