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ABSTRACT
Medical embedded systems are capable of recording vast
data sets for physiological and medical research. Linear
modeling techniques are proposed as a means to explore
relationships between two or more medical or physiologi-
cal signal measurements where a causal relationship is be-
lieved to be present. Multiple regression is explored for use
in medical monitoring, telehealth, and clinical applications.

Spectral regression methods for high-bandwidth med-
ical and physiological signals are demonstrated. The two-
stage method consists of performing an FFT over a time-
lagged window of the predictor signal, and constructing a
model based on the FFT coefficients. The output of the re-
gression is used in a clustering to explore structure in the
array of spectral predictors. It has been applied to medical
and physiological time series data, specifically the link be-
tween respiration and blood oxygen saturation percentage
in sleep apnea patients.

Spectral predictors achieved a dramatically better
goodness of fit than time-lagged predictors according to
standard analysis of variance measures. In the dataset ex-
amined, the spectral model achieved a multiple R2 of 0.90,
indicating that 90% of the variation in the dependent signal
was captured by the model, while an ordinary distributed
lag model had a R2 of only 0.016.

KEY WORDS
Biomedical Modelling; Cardiovascular Modelling; Time
Series Analysis; Respiratory Mechanics.

1 Introduction

The volume of data that is projected to be collected by med-
ical embedded systems is overwhelming [11] [17]. Data
to be collected may be single or multi-channeled, and dif-
ferent datasets may have different sampling rates, signal-
to-noise ratios, and various signal characteristics. Further-
more, data is collected using a variety of diagnostic devices
and health sensors in various types of environments. As a
result there is a wide-ranging interest in systems for human-
trained and automatic classification and interpretation of
physiologic signals.

Our interest in the current work concerns the estab-
lishment of a relationship between one medical signal or

parameter and one or more others; these physiological
quantities are modeled as variables in a linear model. To
discover correlations between the quantities we use regres-
sion, a well-known method for statistically fitting data ob-
servations to a model. The system and algorithms under
discussion perform efficient linear model regressions for
correlation studies and for prediction to aid in clinical re-
search and health care environments. In signal data that
may represent the onset or degree of the medical condition
or phenomenon in question, these systems perform pattern
matching and learn signal patterns.

Embedded systems in the medical monitoring domain
offer early detection of physical ailments and can enhance
the doctor and patient relationship by offering remote diag-
noses. Additionally, they can help to enhance the expertise
of trained health care professionals, and to search for cures
to chronic illnesses. These systems are flexible in the way
that scientists can reprogram or re-task them after deploy-
ment in the field. Systems also exist for emergency medical
response to catastrophic events like earthquakes, typhoons
or disease epidemics.

2 Related Work

Related work has been performed on categorizing, orga-
nizing, and processing medical and physiological time se-
ries and signals. Motif finding attempts to find previ-
ously known or unknown patterns in time series databases
[8], and motifs are useful for activity detection in embed-
ded sensing medical systems [18]. Probabilistic discov-
ery of motifs is also possible [2]. Activity detection stud-
ies attempt to classify physical activities that the subjects
are performing purely through the physiological signals
recorded. Bao and Intille [1] perform activity recognition
from acceleration data using several classification methods.
Oates, et al. study clustering of signals for robotics [12]. To
our knowledge, our use of time-lagged regression to study
physiologic signal data is the first of its kind.

The data used in the current work was collected as
part of a study by Garpestad, et al. [5] on cardiac function
during sleep apnea cycles. In related work, Chon, Dash,
and Ju [3] attempt to estimate the respiration rate through
time-frequency spectra of the pulse oximetry signal. Lu
et al. [9] explore algorithms for detecting peaks and val-



leys in respiratory signals. Shelley, Awad, Stout and Silver-
man [16] use spectral analysis of pulse oximetry signals as
an alternative method for measuring respiration rates when
compared to CO2 detection. Studies on sleep apnea high-
light its possible links to negative effects on cardiovascular
physiology, hypertension, and cardiovascular disease [15]
[13].

3 Background

In medical monitoring studies or applications, one obtains
measurements on two or more variables through data col-
lected simultaneously on a single subject. We are interested
in knowing whether or not the variables go together or co-
vary. Our interest in the current work concerns the relation-
ship between an independent variable and one or more de-
pendent variables; the purpose of experiments involving the
variables being to assess the effects of variations in the in-
dependent variable on the dependent variable as a response
measure. Studies of this kind are correlational in that they
attempt to determine whether or not two variables influ-
ence each other, and regression measures and estimates the
strength and direction of these relationships.

In typical physiological studies, signals of interest
may be sampled at a far higher rate than the rate in which
they influence each other, and they may be sampled at
different rates than each other. Additionally, the time
scales under which signals influence each other may not be
known, and the functional form under which the relation-
ship is modeled is important to the success of regression
techniques. We propose efficient algorithms for dynamic
time lag regression over model selection for use in physio-
logical studies.

Econometrics models and methods are indispensable
when data on variables is highly interrelated and observed
over time, individuals, or space [10]. Relationships be-
tween measurements of physiological quantities would
tend to be dynamic in the sense that variations in an in-
dependent variable may take time to impact a dependent
variable, and the impact may be long-lived.

3.1 Model Selection

The availability of many possible predictors to choose from
to perform a regression precipitates problems in linear
model selection. Reducing the size of the set of predic-
tor variables pursues the definition of a model with fewer
explanatory factors, and in many research and clinical ap-
plications, simple explanations and rules of thumb are pre-
ferred to help understand parts of complex phenomena. On
the other hand, one must choose enough predictor variables
in order to get a reliable fit to the data. Including too few
variables and making the model overly simplistic may ig-
nore factors and predictors that are important to explaining
the phenomena. Additionally, models are usually more ef-
ficacious when they have less predictor variables—the esti-

mated true validity of a sample multiple regression is very
low when the number of predictor variables is large in re-
lation to the number of observations.

Many procedures have been proposed for model se-
lection. Stepwise regression adds parameters to the model
one by one according to certain criteria. Backward elim-
ination performs the opposite; it starts with a regression
involving all available variables and selectively removes
variables based on certain criteria. The all subsets algo-
rithm performs regressions with all 2p possible linear mod-
els, given p predictors to choose from. Both stepwise re-
gression and backward elimination have stopping criteria
under which the process completes with a certain subset of
the available parameters.

4 Formalization

4.1 Multiple Regression

Let Y represent a dependent or criterion variable, and let
X1, X2, X3, . . .Xn represent independent or predictor
variables of Y . An observation of Y coupled with observa-
tions of the independent variables Xi is a a case or a run of
an experiment. Observations of values for any given vari-
able will form a continuous, totally-ordered set.

In experimental runs, score values of these variables
are observed from a population. We assume that any
dataset we use is a sample from a population as larger
group. Multiple regression methods will attempt to derive
or calculate a constant β0 and a set of weights, β1, β2, β3

. . .βn for the predictor variables. In the equation

Ŷ = β0 + β1X1 + β2X2 + β3X3 + . . .+ βnXn + ε,

Ŷ is then used to predict the observations of Y given the
observations of the Xi.

The βi are called correlation coefficients, and ε is the
uncorrelated error or disturbance. Regression fits the values
from a set of observations to the model by estimating the
correlation coefficients. Typically the coefficients are cho-
sen so that Ŷ predicts Y with a minimum sum of squared
errors for the sample. The model can be written as a sum-
mation

Ŷ = β0 +
n∑

i=1

βiXi + ε. (1)

4.2 Time Series

Regression will be used to predict time series values of the
dependent variable Y based on time series data of the inde-
pendent variable X . Ideally, time series data for X will be
sampled at regular intervals and will be represented by the
Xi. Time series data for the dependent variable Y need not
be sampled regularly. Observations of Yi and Xi will be
made over a time period 0 < t < T . Causality is assumed,
and if Yt exists, Xt, Xt−1, Xt−2, Xt−3, . . .X0 can be used
in a multiple regression to predict it.



The Xi predictor variables of Y used in the model
represent observations made periodically during a continu-
ous time period beginning at some time before Y was ob-
served and ending at the time of observation of Y . Models
of this kind are known as distributed lag models, and are
useful when changes in the independent variable X have
an effect on the value of Y over many samples of Y . Be-
cause two variables are involved, this is called a bivariate
distributed lag model. Typically, if X and Y are observed
at identical periods at the same frequency, T bivariate ob-
servations will be made of Yt and Xt. We will restrict our
set of predictor variables for Yt to n values of the time se-
ries inX represented byXt−1, Xt−2, Xt−3, . . .Xt−n. The
model can be succinctly written

Ŷt = β0 +
n∑

i=1

βiXt−i + ε. (2)

4.3 Analysis of Variance

R2, a scale-free measure representing the percentage of the
variance in the data that is explained by the model, is a
typical measure of the accuracy of the regression,

R2 =
E[(Ŷ − E[Y ])2]
E[(Y − E[Y ])2]

.

The numerator is the “model” sum of squared dif-
ferences between the value of Y predicted by the model
and the value of Y actually seen in each observation. The
denominator is the “total” sum of squared differences be-
tween observations of Y and the mean of Y . This is a bi-
ased estimator of the true value ofR2 in the population, but
we assume that there are enough observations to overcome
this bias.

The greater the value of R2, the greater the goodness
of fit of the model. As is typically done, we use R2 as an
objective in automated model selection problems and their
respective algorithms.

5 Oscillatory Analysis

As we perform distributed time-lagged regression over sig-
nals, where the time scales of the alleged correlations be-
tween the two waveforms may be much longer than their
sampling frequencies, we seek out methods to manage the
number of predictors. The predictors need to cover the
time-lag region in which the suspected correlation is in
place.

Because our study uses the respiration effort signal as
a predictor signal, and because the respiration effort signal
has so many periodic characteristics, we chose to use spec-
tral characteristics of the signal in the regression. More
specifically, Rather than simply perform multiple regres-
sion with time-lagged predictors, we propose multiple re-
gression with coefficients from a Fourier transform of the
predictor signal as predictors. In our study a fast Fourier

transform of a segment of the predictor signal residing in a
time lagged window is used to predict the exogenous sig-
nal.

6 Clustering of Spectral Predictors

We observe that the use of spectral information requires the
use of many predictors in the model for the bandwidths of
signals in use. However, multiple regression often benefits
when less predictors can be used. The goal of reducing the
independent variable set may be achieved when representa-
tive predictors are used, and when predictors can be placed
in groups with similar characteristics.

We attempt the placement of predictors into similar
groups in this study through the use of clustering algo-
rithms. Clustering algorithms group sets of observations,
usually according to a parameter k representing the desired
number of clusters to be found by the algorithm. Hierar-
chical clustering algorithms solve the clustering problem
for all values of k using bottom up and top down methods.

We use a hierarchical clustering algorithm called
AGNES [7] to cluster the spectral predictors based on three
criteria obtained from a multiple regression performed on
the FFT coefficients. As measures of similarity used in
clustering, these criteria are the FFT index, the regression
coefficient estimates themselves, and the regression coeffi-
cient t values.

The AGNES algorithm constructs a hierarchy of clus-
terings. At first, each observation is a small cluster by it-
self. Clusters are merged until only one large cluster re-
mains containing all of the observations. At each stage the
two nearest clusters are combined to form one larger clus-
ter. The AGNES algorithm also yields the agglomerative
coefficient (a value between 0 and 1) which measures the
amount of clustering structure found.

7 Experimental Results

In our tests we perform regression predictor clustering on
data from the PhysioNet project. PhysioNet provides free
access to large databases of physiological signal datasets
via the web. Open-source software and libraries are also
provided for mining and analysis. The associated Phys-
ioBank database is a archive of physiological signals pro-
vided freely to the telehealth research community, and its
many multi-parameter datasets are useful to for correlation
and regression studies. It contains cardiopulmonary and
neurological data and even gait databases from both healthy
subjects and subjects under treatment, and many datasets
include professional annotations.

For our study we used a dataset from the MIT-BIH
Polysomnographic Database [6], which contains a col-
lection of recordings of multiple physiologic signals dur-
ing sleep. The subjects were monitored for evaluation
of chronic obstructive sleep apnea syndrome at Boston’s
Beth Israel Hospital Sleep Laboratory. Subjects were also
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Figure 1: Example abdominal respiration signal (in millivolts) and oxygen saturation signal (in percentage) from the MIT-BIH
Polysomnographic Database dataset used. A sleep apnea episode occurs in the center of the chart, reducing the airflow through
respiration. A corresponding decline can be observed in the oxygen saturation signal, which later increases when the sleep
apnea episode subsides.
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Figure 2: Clustered predictor groups for FFT coefficients 0-159, illustrating the execution of the AGNES clustering algorithm.



monitored to test the effects of a standard therapeutic in-
tervention to prevent or substantially reduce airway ob-
struction called constant positive airway pressure (CPAP).
The database consists of four-, six-, and seven-channel
polysomnographic recordings, and contains over 80 hours’
worth of data.

The recording that we chose, SLP59, includes an
ECG signal, an invasive blood pressure signal (measured
using a catheter in the radial artery), an EEG signal, and
two respiration signals—one signal from a nasal thermistor
and the second being a respiratory effort signal derived by
inductance plethysmography. The dataset also includes a
cardiac stroke volume signal and an earlobe oximeter sig-
nal. All signals are sampled at a rate of 250 Hz. The dataset
also contains annotation files; The ECG signal has beat-by-
beat annotations, and the EEG and respiration signals are
annotated with respect to sleep stages and apnea.

7.1 Time-Lagged Multiple Regression

In our experiments we used the abdominal plethysmogra-
phy respiration signal as the independent variable, and the
oxygen saturation signal as the dependent variable. Exam-
ple waveforms of RESP and SO2 from the dataset are given
in Figure 1.

3600 samples of a the dataset were used to construct
a time series to be fit to a bivariate distributed lag linear
model. The data was downsampled to a rate of 1 Hz in or-
der to provide for longer lags. The use of a finite distributed
lag model requires the selection of a lag cutoff point be-
yond which there are no lagged variables. For simplicity,
in this case, we chose a lag cutoff of 30 samples, or, given
the downsampling, 30 seconds.

The R software environment for statistical computing
[14] was used to perform the multiple regression. The inter-
cept estimate had 95% confidence with a t value of 177.01.
About half of the time-lagged variables have t values at the
95% confidence level, with the t value curve peaking at a
time lag of 9 seconds. However, this model achieves an R2

value of 0.016, indicating that very little of the variability
in the dependent variable was captured in the model.

We had only moderate success using time-lagged
multiple regression to predict blood oxygenation using the
respiratory effort signal. As one can see from the figure,
the plethysmographic waveform has a very periodic char-
acter as the patient inspires and expires air. Rather than
simply perform multiple regression with time-lagged pre-
dictors, we propose multiple regression with coefficients
from a Fourier transform of the predictor signal as predic-
tors. In our study, a fast Fourier transform of a segment
of the predictor signal residing in a time lagged window is
used to predict the exogenous signal.

For the spectral regression algorithm, in total 90000
samples (360 seconds) of the dataset were used to construct
a time series. Here the data was downsampled by a factor
of 25 to a rate of 10 Hz. For each sample of the oximetry
signal, a fast Fourier transform is performed on the seg-

ment of the predictor signal residing within a time-lagged
window of 8000 samples (32 seconds). The first sample of
the time-lagged window occurs at the same point in time as
the dependent signal, and the last sample of the time-lagged
window occurs at a point 8000 samples earlier.

Downsampling by a factor of 25X was performed.
For accurate downsampling, rather than choose a single
representative sample, the 10 samples for each signal were
averaged. Smoothed samples were buffered and the fftw
package [4] was used to perform FFTs. Under the assump-
tion that little phase information would be useful in the pre-
diction, the moduli of the of the FFT coefficients were uti-
lized as predictors.

We are careful in the following text to distinguish be-
tween the FFT coefficients which are used as predictors in
the regression, and the regression coefficients β which ap-
pear in front of the FFT coefficient values in the model. The
multiple regression used only FFT coefficients indexed 0-
159, representing the frequency band from 0 to 5Hz.

We observed that some of the lower-frequency FFT
coefficients tend to have greater t values and thus greater
validity. The regression resulted in a residual standard er-
ror of 0.7556 on 3118 degrees of freedom and a multiple
R2 of 0.90 indicating that 90% of the variability in the of
the oximetry signal was captured by the respiration effort
model.

The cluster package available for R was used to per-
form an AGNES clustering. A figure illustrating the frag-
mentation of the clustering groups is given in Figure 2. A
change in color from one FFT index to another as a row is
traversed from left to right indicates a boundary between
two clusters. The groups are given for 160, 128, 92, 64,
32, 24, 16, 12, 8, 6, 4, 3, 2, and 1 clusters. The agglom-
erative coefficient, an indicator of the amount of clustering
structure found, was 0.966.

8 Conclusion

In this paper we have demonstrated an efficient spectral re-
gression method for high-bandwidth medical and physio-
logic signals. The two-stage method consists of performing
an FFT over a time-lagged window of the predictor signal,
and constructing a model based on the FFT coefficients.
The output of the regression is used in a clustering to ex-
plore structure in the array of spectral predictors. It has
been applied to medical and physiological time series data,
specifically the link between respiration and blood oxygen
saturation percentage in sleep apnea patients.

We found that using spectral variables as predictors
achieved a far higher goodness of fit than a plain distributed
time-lag model according to standard analysis of variance
measures. In the dataset examined, the spectral model
achieved a multiple R2 of 0.90, while a plain time-lagged
model had a R2 of only 0.016. Many of the variables in the
model produced by the algorithm had high scores in t tests
for validity.



In future work we will consider algorithms for select-
ing the length of the time-lagged window, as this will have
a major effect on the spectral information available. The
clustered spectral predictors may be used for subsequent
regressions as well.
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