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Abstract—Medical embedded systems of the present and future
are recording vast sets of data related to medical conditions
and physiology. Linear modeling techniques are proposed as
a means to help explain relationships between two or more
medical or physiological signal measurements from the same
human subject. In this paper a statistical regression algorithm is
explored for use in medical monitoring, telehealth, and medical
research applications.

An essential element in applying linear modeling to physiologi-
cal data is determining functional forms for the predictor signals.
In this paper we demonstrate an efficient method for symbolic
regression and model selection among possible transformation
functions for the predictor variables. The three-stage method
uses LASSO shrinkage regression to select a brief functional
form and performs an polynomial lag regression with this form.

This method is applied to medical and physiological time
series data exploring the link between respiration and blood
oxygen saturation percentage in sleep apnea patients. We found
that our method for selecting a functional transformation of the
predictor variable dramatically improved the goodness of fit of
the model according to standard analysis of variance measures.
In the dataset examined, the model achieved a multiple R2 of
0.3373, while a plain time-lagged model without transformation
or polynomial lags had a R2 of only 0.016. All of the variables in
the model produced by the algorithm had high scores in t tests
for validity.

Index Terms—Biomedical Modelling; Cardiovascular Mod-
elling; Time Series Analysis; Respiratory Mechanics.

I. INTRODUCTION

The volume of data that is to be collected by medical moni-
toring systems of the present and future is overwhelming. Data
to be collected may be single or multi-channeled and different
datasets may have different sampling rates, signal-to-noise
ratios, and various signal characteristics. Additionally, data
is collected using a variety of health sensors and diagnostic
devices in different environments.

As a result there is a wide-ranging interest in systems
for human-trained and automatic classification of physiolog-
ical signals. Our interest in the current work concerns the
establishment of a relationship between one medical signal
or parameter and one or more others; These physiological
quantities are modeled as variables in a linear model. The
procedure for statistically fitting data observations to a model
to discover correlations between the quantities is known as
regression. The system and algorithms under discussion per-
form efficient linear model regressions for correlation studies
and for prediction to aid in clinical research and health care
environments. These systems perform pattern matching and

learn signal patterns in data that may represent the onset or
degree of the medical condition or phenomenon in question.

Embedded systems in the medical monitoring domain are
able to collect huge amounts of data at a very high reso-
lution from multiple locations at very low cost [15] [18].
It has become a very important and fruitful area of study
for wireless embedded sensor networks. These systems offer
early detection of physical ailments and can enhance the
doctor and patient relationship by offering remote diagnoses.
They can help to enhance the expertise of trained health care
professionals, and provide tools for investigative efforts to cure
chronic illnesses. Systems also exist for emergency medical
response to catastrophic events like earthquakes, typhoons or
disease epidemics. These systems are flexible in the way that
scientists can reprogram or re-task them after deployment in
the field.

II. RELATED WORK

Similar work has been done on on processing, organizing
and categorizing medical and physiological signals and time
series. Activity detection studies attempt to classify physical
activities that the subjects are performing purely through the
physiological signals recorded. Bao and Intille [3] perform
activity recognition from acceleration data using several clas-
sification methods. Motif finding attempts to find previously
known or unknown patterns in time series databases [12] and
motifs are useful for activity detection in embedded sensing
medical systems [20]. Probabilistic discovery of motifs is
also possible [4]. Oates, et al. study clustering of signals
for robotics [16]. As another form of activity detection, the
Smartfall system attempts to detect falls through the use of
accelerometers and gyroscopic sensors embedded in a cane
[11] [2].

Some studies focus on medical monitoring of vital health
signs such as heart rate, blood pressure and EKG. In the
field of body sensor networks, in-vivo monitoring, fitness, and
athletics are studied. Mobile ad-hoc sensor networks have also
been explored for medical emergency response and triage [8].

Some well known work in the statistical literature has used
health and physiological data to test new and general multiple
regression algorithms. Efron, Hastie, Johnston and Tibshirani
use data from a diabetes study to generate a prediction model
in their efforts to study least angle regression [7]. However,
to our knowledge, our use of time-lagged regression to study
physiological signal data is the first of its kind.



III. BACKGROUND

Our interest in the current work concerns the relationship
between an independent variable and one or more dependent
variables; the purpose of experiments involving the variables
being to assess the effects of variations in the independent
variable on the dependent variable as a response measure.
In medical monitoring studies or applications, one obtains
measurements on two or more variables through data collected
simultaneously on a single subject. We are interested in
knowing whether or not the variables go together or covary.
Studies of this kind are correlational in that they attempt
to determine whether or not two variables influence each
other, and regression measures and estimates the strength and
direction of these relationships. Often times the methods are
not used in fully controlled experiments where the independent
variables are explicitly chosen, and random sampling is used
to eliminate bias.

in medical embedded sensing systems many types of mea-
surements may be treated as independent variables. For ex-
ample, accelerometry or gyroscopic sensors may record data
related to specific actions or motions of the subject, or may
record the subject’s general activity. The data can be studied
with blood pressure, blood oximetry, or heart rate as the de-
pendent variable for studies in exercise, training and physical
fitness. This data may then be chosen for a correlational study
with a nervous system or muscular system disorder.

In typical physiological studies, signals of interest may be
sampled at a far higher rate than the rate in which they
influence each other, and they may be sampled at different
rates than each other. For example, typical range from 100 to
250 Hz or more while weight scale data for human subjects
in a typical study may be in the micro-Hertz range at one
or two samples per day. This creates a multiple orders-of-
magnitude difference in sample rate between the data sources.
Additionally, the time scales under which signals influence
each other may not be known, and the functional form under
which the relationship is modeled is important to the success
of regression techniques. We propose efficient algorithms for
dynamic time lag regression over model selection for use in
physiological studies.

When data on variables is highly interrelated and ob-
served over time, individuals, or space, econometrics models
and methods are indispensable [14]. Relationships between
measurements of physiological quantities would tend to be
dynamic, in the sense that variations in an independent variable
may take time to impact a dependent variable, and the impact
may be long-lived. Techniques for dynamic time series models
are well known in econometrics.

A. Model Selection

The availability of many possible predictors to choose
from to perform a regression precipitates problems in linear
model selection. Models can usually benefit from having less
predictor variables—the estimated true validity of a sample
multiple regression is very low when the number of predictor
variables is large in relation to the number of observations [5].

Reducing the size of the set of predictor variables also
pursues the definition of a model with fewer explanatory
factors. In many research and clinical applications, simple
explanations and rules of thumb are desired to help understand
parts of complex phenomena. On the other hand, we need to
choose enough predictor variables in order to get a reliable fit
to the data. Including too few variables and making the model
overly simplistic may ignore factors and predictors that are
important to explaining the phenomena.

Many procedures have been proposed for model selection.
The all subsets algorithm performs regressions with all 2p

possible linear models given p predictors to choose from.
Stepwise regression adds parameters to the model one by one
according to certain criteria. Backward elimination performs
the opposite; it starts with a regression involving all available
variables and selectively removes variables based on certain
criteria. Both stepwise regression and backward elimination
have stopping criteria under which the process completes with
a certain number of the available parameters. Draper and Smith
[6] and Weisberg [21] provide useful surveys of the details of
the inner workings of these methods.

In linear models, transformations of predictor variables
through functions such as log, square-root or polynomial
functions are allowed as predictor variables in the model.
“Dummy” encodings of categorical variables as quantita-
tive variables are also allowed. The selection of appropriate
transformations and representations of the various predictor
variables comprise another form of model selection. Symbolic
regression and system identification [13] techniques have been
proposed and used for the purpose of discovering models to
explain complicated financial data. Often symbolic regression
techniques involve forms of genetic programming [10].

IV. FORMALIZATION

A. Multiple Regression

Let Y represent a dependent or criterion variable, and X1,
X2, X3 ... Xn represent independent or predictor variables of
Y . We will consider cases where observations of values for
any given variable form a continuous, totally-ordered set. An
observation of Y coupled with observations of the independent
variables Xi is a run of the experiment, often called a case.

In experimental runs, score values of these variables are
observed from a population. We assume that any dataset we
use is a sample from a population as larger group. Multiple
regression methods will attempt to derive or calculate a
constant β0 and a set of weights, β1, β2, β3, ... βn for the
predictor variables. In the equation

Ŷ = β0 + β1X1 + β2X2 + β3X3 + ...+ βnXn + ε,

Ŷ is then used to predict the observations of Y given the
observations of the Xi

The βi are called correlation coefficients, and ε is the
uncorrelated error or disturbance. Regression fits the values
from a set of observations to the model by estimating the
correlation coefficients. Typically the coefficients are chosen



so that Ŷ predicts Y with a minimum sum of squared errors
for the sample. The model can be written as a summation

Ŷ = β0 +
n∑

i=1

βiXi + ε. (1)

B. Time Series

Regression will be used to predict time series values of
the dependent variable Y based on time series data of the
independent variable X . Ideally, time series data for X will
be sampled at regular intervals and will be represented by the
Xi. Time series data for the dependent variable Y need not
be sampled regularly. Observations of Yi and Xi will be made
over a time period 0 < t < T . Causality is assumed, and if Yt

exists, Xt, Xt−1, Xt−2, Xt−3, ... X0 can be used in a multiple
regression to predict it.

The Xi predictor variables of Y used in the model represent
observations made periodically during a continuous time pe-
riod beginning at some time before Y was observed and ending
at the time of observation of Y . Models of this kind are known
as distributed lag models, and are useful when changes in the
independent variable X have an effect on the value of Y over
many samples of Y . Because two variables are involved, this
is called a bivariate distributed lag model. Typically, if X and
Y are observed at identical periods at the same frequency, T
bivariate observations will be made of Yt and Xt. We will
restrict our set of predictor variables for Yt to n values of the
time series in X represented by Xt−1, Xt−2, Xt−3, ... Xt−n.
The model can be succinctly written

Ŷt = β0 +
n∑

i=1

βiXt−i + ε. (2)

C. Analysis of Variance

R2, a scale-free measure representing the percentage of the
variance in the data that is explained by the model, is a typical
measure of the accuracy of the regression,

R2 =
E[(Ŷ − E[Y ])2]
E[(Y − E[Y ])2]

.

The numerator is the “model” sum of squared differences
between the value of Y predicted by the model and the value
of Y actually seen in each observation. The denominator is
the “total” sum of squared differences between observations
of Y and the mean of Y . This is a biased estimator of the true
value of R2 in the population, but we assume that there are
enough observations to overcome this bias.

The greater the value of R2, the greater the goodness of fit
of the model. As is typically done, we use R2 as an objective
in automated model selection problems and their respective
algorithms.

D. Polynomial Distributed Lag Models

One of the main difficulties with regression using the
equation above is that we cannot get reliable estimates of
the parameters βi due to the high correlations between values
of the predictor signal close to each other in time. Almon

[1] studied the case where the lagged coefficients βi decline
according to a polynomial of degree r in i. If the degree of
the polynomial r is 2, for instance, we write the following
equation for the βi where i > 0,

βi = α0 + α1i+ α2i
2

If this expression for the βi is substituted into the distributed
lag model above we get

Ŷt = β0 +
n∑

i=1

(α0 + α1i+ α2i
2)Xt−i + ε.

We then substitute new predictor variables Z0t, Z1t, Z2t where

Z0t =
n∑

i=1

Xt−i

Z1t =
n∑

i=1

iXt−i

Z2t =
n∑

i=1

i2Xt−i

and the model is rewritten

Ŷt = β0 + α0Z0t + α1Z1t + α2Z2t + ε. (3)

Instead of regressing Yt on the Xt−i we use Z0t, Z1t and Z2t.
We indirectly estimate the βi by obtaining estimates for α0,
α1 and α2.

V. SYMBOLIC MODEL SELECTION

Another obstacle is choosing the symbolic representation
of the predictor variables in the model. If a simple model
with no transformation of the predictor variables (equation
(2)) is poor in representing the variance in the data, a more
sophisticated symbolic functional form for the predictor data
may be needed. Later we shall exhibit an example with high
levels of confidence for many of the predictor variables in the
model coupled with very low values for R2. We now explore
some simple algorithms for seeking out and discovering a
symbolic functional form that better captures the behavior
present in the data.

We propose the use of the LASSO method for multiple
regression as a means for symbolic regression-style selection
of the functional form of the linear model. LASSO [19] is
a “shrinkage” variable selection method for linear regression,
meaning that the method shrinks or reduces to zero some coef-
ficients for prediction accuracy and for interpretation purposes.
It minimizes the usual sum of squared errors, with a bound
on the sum of the absolute values of the coefficients:∑

1>j>n

|βj | ≤ τ

where τ ≥ 0 is a tuning parameter which controls the amount
of shrinkage which is applied to the estimates. Note that the
intercept β0 is not included.



An efficient implementation of LASSO multiple regression
is provided by the LARS Least Angle Regression package
for the R software environment for statistical computing [17].
The LARS algorithm, which computes coefficients for LASSO
regression with a minor modification, is described in [7]. The
LARS package can generate coefficients for all values of the
tuning parameter τ .

VI. A SHRINKING SYMBOLIC REGRESSION ALGORITHM

We propose an algorithm for symbolic regression for dy-
namic time lagged models that works in the following stages.
First, once a maximum predictor time lag n is chosen, a dataset
is generated that averages the values of time lagged predictor
samples. For an observation of the dependent variable at time
t samples of the predictors are averaged in a window between
t and t− n:

X̄t =
1
n

n∑
i=1

Xt−i

Secondly, the lag-window averaged dataset above is mul-
tiplexed for m functional forms of interest in the symbolic
domain. Then predictors representing the various function
forms computed using the lag-window averaged dataset are
added to the set of predictors of the dependent variable. This
allows us to attempt to select the functional form of the
model without Almon lags present. LASSO/LARS multiple
regression is then used to shrink the number of functional
parameters used.

In the third stage, a small number of functional parameters
generated from the second, shrinkage stage are used in an
Almon polynomial lag model for each functional form. If the
functional forms are fj(x), then the Almon lag model is

Ŷt = β0 +
∑

j

(α0jZ0jt + α1jZ1jt + α2jZ2jt) + ε,

where for each fj(x)

Z0jt =
n∑

i=1

fj(Xt−i)

Z1jt =
n∑

i=1

ifj(Xt−i)

Z2jt =
n∑

i=1

i2fj(Xt−i).

Then the model is more succinctly written

Ŷt = β0 +
2∑

i=0

m∑
j=1

αijZijt + ε. (4)

VII. EXPERIMENTAL RESULTS

In our tests, we use the three-stage symbolic regression algo-
rithm on data from the PhysioNet project. PhysioNet provides
free access to large databases of physiological signal datasets
via the web. Open-source software and libraries are also
provided for mining and analysis. The associated PhysioBank
database is a archive of physiological signals provided freely
to the telehealth research community and its many multi-
parameter datasets are useful to for correlation and regression
studies. It contains cardiopulmonary and neurological data and
even gait databases from both healthy subjects and subjects
under treatment, and many datasets include professional an-
notations.

For our study we used a dataset from the MIT-BIH
Polysomnographic Database [9], which contains a collection
of recordings of multiple physiologic signals during sleep. The
subjects were monitored for evaluation of chronic obstructive
sleep apnea syndrome at Boston’s Beth Israel Hospital Sleep
Laboratory. Subjects were also monitored to test the effects of
a standard therapeutic intervention to prevent or substantially
reduce airway obstruction called constant positive airway pres-
sure (CPAP). The database consists of four-, six-, and seven-
channel polysomnographic recordings, and contains over 80
hours’ worth of data.

The recording that we chose, SLP59, includes an ECG
signal, an invasive blood pressure signal (measured using
a catheter in the radial artery), an EEG signal, and two
respiration signals—one signal from a nasal thermistor and the
second being a respiratory effort signal derived by inductance
plethysmography. The dataset also includes a cardiac stroke
volume signal and an earlobe oximeter signal. All signals
are sampled at a rate of 250 Hz. The dataset also contains
annotation files; The ECG signal has beat-by-beat annotations,
and the EEG and respiration signals annotated with respect to
sleep stages and apnea.

In our experiments we’ve used the abdominal plethysmog-
raphy respiration signal as the independent variable, and the
oxygen saturation signal as the dependent signal. Example
waveforms of RESP (nasal) and SO2 from the dataset are
given in Figure 1. 3600 samples of a the dataset were used
to construct a time series to be fit to a bivariate distributed
lag linear model. The data was downsampled to a rate of 1
Hz in order to provide for longer lags. The use of a finite
distributed lag model requires the selection of a lag cutoff point
beyond which there are no lagged variables. For simplicity, in
this case, we chose a lag cutoff of 30 samples, or, given the
downsampling, 30 seconds.

At first we attempted a multiple time-lagged regression
with out a functional form or polynomial lags. The intercept
estimate had 95% confidence with a t value of 177.014. The
coefficient estimates and t values are in Figure 2. About half of
the time-lagged variables have t values at the 95% confidence
level, with the t value curve peaking at a time lag of 9 seconds.
However, this model achieves an R2 value of 0.016, indicating
that very little of the variability in the dependent variable was



Fig. 1: Example abdominal respiration signal (in liters) and oxygen saturation signal (in percentage) from the MIT-BIH
Polysomnographic Database dataset used. Also seen are the sleep stage annotations given at 30 second intervals. A sleep apnea
episode occurs in the center of the chart, reducing the airflow through respiration. A corresponding decline can be observed
in the oxygen saturation signal, which later increase when the sleep apnea episode subsides.
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Fig. 2: Coefficient estimates and t values for a time-lagged multiple regression with untransformed predictors. Data from the
MIT-BIH Polysomnographic Database was used with a abdominal respiration as the time-lagged predictor signal and blood
oxygen saturation as the dependent signal. Greater absolute values of t indicate greater statistical significance of the predictor
for that time lag.

captured in the model.
Next we average data from 30 seconds and used it for the

symbolic regression with the hope of later using Almon lag
coefficients. The LASSO was used as a shrinkage method
to determine a short functional form to use. We chose the
following functional forms to use in shrinkage: f1(x) = x,
f2(x) = |x|, f3(x) = x2, f4(x) = x3, f5(x) = |x3|,
f6(x) = log(|1 + x|), f7(x) =

√
|x|, f8(x) = ex.

The results from running the LASSO are shown in Figures
3 and 5. The former is a plot (produced by the LARS package
for R) of the progression of the LARS/LASSO algorithm as

it adds coefficients and increases or decreases their values
with each step. The progression is mapped as a function of
the normalized L1 norm of the coefficient vector |β|. Figure
5 shows the step-by-step progression of the algorithm as it
adds and removes parameters to and from the model. In
LARS earlier steps represent smaller values of the shrinkage
parameter t, while later steps represent larger values. The
LARS regression had an R2 value of 0.40.

The LARS/LASSO execution gave preference to the func-
tional forms |x| and log(|1 + x|) for small values of the
shrinkage parameter. We chose to use these functional forms
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Fig. 3: A plot of the progression of the LARS algorithm on the symbolic regression model. Steps in the algorithm are represented
by the vertical lines proceeding from left to right. Coefficients are plotted in relation to values of the normalized shrinkage
parameter t as |β|/max |β|. The predictors are represented in the graph by integer function index f1 = x, f2 = |x|, f3 = x2,
f4 = x3, f5 = |x3|, f6 = log(|1 + x|), f7 =

√
|x|, f8 = ex.

Function Almon Predictor Estimate Std. Error t value Pr(> |t|)
(Intercept) 90.56 0.4671 193.871 < 2× 10−16

|x| Z00t 0.8942 0.1082 8.265 < 2× 10−16

|x| Z10t 0.01543 1.708× 10−3 9.034 < 2× 10−16

|x| Z20t −9.245× 10−5 7.79× 10−6 −11.864 < 2× 10−16

log(|1 + x|) Z01t −0.7941 0.1506 −5.275 1.41× 10−7

log(|1 + x|) Z11t −0.01734 2.010× 10−3 −8.627 < 2× 10−16

log(|1 + x|) Z21t 9.975× 10−5 8.581× 10−6 11.625 < 2× 10−16

Fig. 4: Regression results for the final stage of the shrinkage symbolic algorithm. The functions f2 = |x| and f6 = log(|1+x|)
were used with a 2nd-order Almon lag polynomial for a model with 6 predictors.



Step Variable Index f(x) Action
LARS Step 1 Variable 2 |x| added
LARS Step 2 Variable 6 log(|1 + x|) added
LARS Step 3 Variable 7

√
|x| added

LARS Step 4 Variable 1 x added
Lasso Step 5 Variable 6 log(|1 + x|) dropped
LARS Step 6 Variable 5 |x3| added
LARS Step 7 Variable 8 ex added
Lasso Step 8 Variable 5 |x3| dropped
LARS Step 9 Variable 3 x2 added
Lasso Step 10 Variable 7

√
|x| dropped

Lasso Step 11 Variable 8 ex dropped
LARS Step 12 Variable 4 x3 added
LARS Step 13 Variable 5 |x3| added
LARS Step 14 Variable 7

√
|x| added

LARS Step 15 Variable 6 log(|1 + x|) added
Lasso Step 16 Variable 1 x dropped
LARS Step 17 Variable 8 ex added
LARS Step 18 Variable 1 x added
Lasso Step 19 Variable 8 ex dropped
LARS Step 20 Variable 8 ex added

Fig. 5: The results of LARS algorithm used for shrinkage
symbolic regression algorithm. The steps given correspond to
the vertical lines in Figure 3, and increasing steps are the
progression of the LARS algorithm and results of the LASSO
regression for increasing values of the shrinkage parameter τ .

in the final stage of the algorithm. A regular regression was
attempted with the window-averaged predictors using only the
two functional forms |x| and log(|1+x|) as separate predictors.
This model achieved t test values of 29.12 and -14.77 for
|x| and log(|1 + x|) respectively indicating a high level of
significance. The model achieved a multiple regression R2

value of 0.2685.
To perform the final stage of the algorithm, a regression

was performed using Almon lagged predictors and using
the functional forms |x| and log(|1 + x|). The results of
this regression are listed in Figure 4. For this regression all
variables enjoyed significance at the 99.9% level, and the
model as a whole had an R2 of 0.3373.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have demonstrated an efficient method
for symbolic regression and model selection among possible
transformation functions for the predictor variables. The three-
stage method consists of averaging the time-lagged predictors
over numerous functional forms, using the LASSO shrinkage
regression method to select a small number of these forms, and
performing a polynomial lag regression with these forms. It
has been applied to medical and physiological time series data,
specifically the link between respiration and blood oxygen
saturation percentage in sleep apnea patients.

We found that our method for selecting a functional transfor-
mation of the predictor variable achieved a far higher goodness

of fit according to standard analysis of variance measures. In
the dataset examined, the model achieved a multiple R2 of
0.3373, while a plain time-lagged model without transforma-
tion or polynomial lags had a R2 of only 0.016. All of the
variables in the model produced by the algorithm had high
scores in t tests for validity.

More intelligent selection of functional forms for shrinkage
may be possible in future work. A form of the LARS algorithm
which takes possible functional forms explicitly into account is
under investigation. A study of signal differencing will likely
result in better quality of the regressions over such signals,
since greater respiration should result in an increase in blood
oxygen levels, not simply a higher absolute blood oxygen
level. The methods may enjoy further success in different
medical signal domains.
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