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ABSTRACT
We explore statistical regression techniques for use in medi-
cal monitoring and telehealth applications. Medical embed-
ded systems of the present and future are recording vast sets
of data related to medical conditions and physiology. In this
paper, distributed time-lag linear models are proposed as a
means to help explain relationships between two or more
medical and physiological measurements. The issues associ-
ated with performing multiple regression with heterogeneous
medical data are treated as problems in model selection. An
automatic method of model selection is proposed to con-
struct models for high sample rate data by grouping sets of
predictor variables.

The grouped predictor variable model optimization prob-
lem is formalized. Once an initial regression is performed on
all available variables, our approximate algorithm for find-
ing the grouped variable model with the greatest validity
runs in O(n2) time, where n is the number of available pre-
dictor variables. This is compared to the all subsets tech-
nique which requires O(2n) time for the same predictor set.
In our experiments with medical signal data, we find that
the method produces models with reasonable goodness of fit
scores and high average confidence levels for grouped pre-
dictors.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Health; J.3 [Life and
Medical Sciences]: Medical Information Systems; I.5.4
[Pattern Recognition]: ApplicationsSignal Processing

General Terms
Algorithms, Theory
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Medical Signals, Regression, Model Selection
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1. INTRODUCTION
Medical monitoring has become a very fruitful and vital

area of study for embedded sensing systems. Embedded
systems in this domain are able to collect huge amounts of
data at a very high resolution from multiple locations at very
low costs [9] [12]. These systems are flexible in the way that
scientists can reprogram or re-task them after deployment in
the field. They also offer early detection of physical ailments
and can enhance doctor and patient relationships by offering
remote diagnoses. Systems also exist for emergency medical
response to catastrophic events like earthquakes, typhoons
or disease epidemics. These systems can help to enhance the
expertise of trained medical professionals and provide tools
for investigative efforts to cure chronic illnesses.

The volume of data that is to be collected by medical
monitoring systems of the present and future is overwhelm-
ing. Data is collected using a variety of medical sensors and
diagnostic devices in different environments. Collected data
sets have different sampling rates, signal characteristics and
signal-to-noise ratios, and can be single or multi-channeled.
There is wide-ranging interest in systems for human-trained
and automatic classification of physiological signals.

Our interest in the current work concerns the establish-
ment of a relationship between one medical signal or param-
eter and one or more others; these physiological quantities
are modeled as variables in a linear model. Regression is a
standard procedure for statistically fitting data observations
to a model to discover correlations between the quantities.
The system and algorithms under discussion perform effi-
cient linear model regressions for correlation studies and for
prediction to aid in clinical research and medical care envi-
ronments.

2. RELATED WORK
Similar work has been done on on processing, organiz-

ing and categorizing medical and physiological signals and
time series. Activity detection studies attempt to classify
physical activities that the subjects are performing purely
through the physiological signals recorded. Bao and Intille
[2] perform activity recognition from acceleration data using
several classification methods.

Motif finding attempts to find previously known or un-
known patterns in time series databases [8] and probabilistic
discovery of motifs is also possible [3]. Motifs are useful for
activity detection in embedded sensing medical systems [13].
Oates, et al. study clustering of signals for robotics [10]. As
another form of activity detection, the Smartfall system at-
tempts to detect falls through the use of accelerometers and



gyroscopic sensors embedded in a cane. [7] [1].

3. BACKGROUND
The relationships between an independent variable and

one or more dependent variables is our primary interest in
the current work. In this domain, experiments attempt to
assess the effects of variations in the independent variable
on the dependent variable as a response measure. Measure-
ments are obtained on two or more variables through data
collected either on a single subject or on multiple subjects
and we are interested in knowing whether or not the vari-
ables move together or co-vary. Studies of this kind are
correlational in that they attempt to determine whether or
not two variables have a dependent tendency. We are also
interested in measuring the strength and direction of these
relationships.

In typical physiological studies involving exercise or move-
ment, some variables may be sampled at a far higher rate
than others. We propose efficient algorithms for developing
descriptive grouped-variable models for use in physiological
studies. Relationships between measurements of physiolog-
ical quantities would tend to be dynamic in the sense that
variations in an independent variable may take time to im-
pact a dependent variable and the impact may be long-lived.

4. FORMALIZATION

4.1 Multiple Regression
Let Y represent a dependent or criterion variable, and

X1, X2, X3, . . .Xn represent independent or predictor vari-
ables of Y . All variables are continuous. A single observa-
tion of the dependent and independent variables in this case
consists of an observation of Y coupled with observations
of the independent variables Xi. Usually we will consider
cases where values for variables are chosen from a continu-
ous, totally-ordered set.

Score values of these variables are observed from a popu-
lation. We assume that any data set we use is a sample from
the population as larger group. Multiple regression methods
will attempt to derive or calculate β1, β2, β3, . . .βn, for the
predictor variables, and the constant β0 such that

Ŷ = β0 + β1X1 + β2X2 + β3X3 + . . .+ βnXn + ε (1)

is a good predictor for Y given the observations of the Xi.
The βi are called correlation coefficients, and ε is the un-

correlated error, or disturbance. Regression fits the values
from a set of observations to the model by estimating the
correlation coefficients. Typically the coefficients are chosen
so that Ŷ predicts Y with a minimum sum of squared errors
for the sample.

4.2 Model Selection
The availability of many possible predictors to choose from

to perform a regression precipitates problems in linear model
selection. Models can usually benefit from having less pre-
dictor variables. This is because of the high costs involved
in obtaining and storing information on a large number of
predictor variables for all observations. Furthermore, the es-
timated true validity of a sample multiple regression is very
low when the number of predictor variables is large in rela-
tion to the number of observations [4]. On the other hand,
one needs to choose enough predictor variables in order to

get a reliable fit to the data. Including too few variables and
making the model overly simplistic may ignore factors and
predictors that are important to explaining the phenomena.

Given p predictors to select from, any member of the
power set of predictors 2p could be used in the model. To
perform a regression with every possible set of predictors is
usually intractable. Thus when many predictors are avail-
able, schemes, heuristics, and algorithms are necessary to
help find a good set of predictors.

Many procedures have been proposed for model selection.
The all subsets algorithm actually does perform regressions
with all |2p| possible linear models given p predictors to
choose from. Stepwise regression adds parameters to the
model one by one according to certain criteria. Backward
elimination performs the opposite; it starts with a regres-
sion involving all available variables and selectively removes
variables based on certain criteria. Both of these methods
have stopping criteria under which the process completes
with a certain number of the available parameters. Draper
and Smith [5] and Weisberg [14] provide useful surveys of
the details of the inner workings of these methods.

4.3 Time Series
Regression will be used to predict time series values of

the dependent variable Y based on time series data of the
independent variable X. Ideally, time series data for X will
be sampled at regular intervals and will be represented by
the Xi. Time series data for the dependent variable Y need
not be sampled regularly. Observations of Yi and Xi will be
made over a time period 0 < t < T . Yt and Xt will repre-
sent the values of Y and X at time t if they exist. Causality
is assumed, and if Yt exists, Xt, Xt−1, Xt−2, Xt−3, . . .X0

can be used in a multiple regression to predict it. The Xi
predictor variables of Y used in the model represent obser-
vations made periodically during a continuous time period
beginning at some time before Y was observed and ending at
the time of observation of Y . Models of this kind are known
as distributed lag models and are useful when changes in the
independent variable X have an effect on the value of Y over
many samples of Y . Because one variable is used to predict
another, the model is more specifically known as a bivariate
distributed lag model.

Typically, if X and Y are observed at identical periods at
the same frequency, T bivariate observations will be made
of Yt and Xt.

4.4 Choosing Observations from the
Predictor Time Series

We will restrict our set of predictor variables for Yt to
n values of the time series in X represented by Xt, Xt−1,
Xt−2, Xt−3, . . .Xt−n.

One typical objective in the use of linear models is to re-
duce the size of the set of predictor variables, which pursues
the definition of a model with few explanatory factors. In
many research and clinical applications, simple explanations
and rules of thumb are desired to help understand parts of
complex phenomena. Also, the number of explanatory vari-
ables used in the model needs to be kept small when com-
pared to the number of observations made of the model,
otherwise the number of degrees of freedom in fitting the
model to the data is too small to guarantee confidence in
the results.



4.5 Sample Groupings
We shall present a family of variable-grouped distributed

lag models in the following way: we shall define new predic-
tor variables Xi,j subscripted by a closed interval represent-
ing the time interval of the group,

Xi,j =

Pj
k=iXk

j − i (2)

which is the mean of the Xk during the time interval [i, j].
βi,j will represent the correlation coefficient for Xi,j .

4.6 Dyadic-Interval Group Time Series
Models

We propose dyadic-interval group time series models where
not all variable groups are the same size. We’ll base these
models on time lag interval windows τ1, τ2, τ3, . . . , τk with
τi = [ai, bi], corresponding variables, X[t−ai,t−bi], and coeffi-
cients β[t−ai,t−bi]. As a shorthand, we will describe variables
solely with the lag interval endpoints and elide t in the in-
terval specification of X and in the specification of Y :

Yt = Y ; X[t−a,t−b] = Xa,b. (3)

This way, the interval group time series model can be
written:

Y = β0 + βa1,b1Xa1,b1 + βa2,b2Xa2,b2 + βa3,b3Xa3,b3

. . .+ βan,bnXan,bn

We require that the time lag interval windows are nonin-
tersecting (except for endpoints). We will also require that
for any interval [ai, bi] there are non negative integers k and
ν such that ai = k2ν and bi = (k + 1)2ν − 1. With this
constraint, the set of possible time lag interval windows is
dyadic and forms a binary tree with these properties:

1. The length of an interval is always an integer power of
two.

2. Every interval is contained in exactly one “parent” in-
terval of twice the length.

3. Every interval is spanned by two “child” intervals of
half the length.

4. If two intervals overlap, then one of them must be a
subset of the other.

5. GROUPED VARIABLE MODEL
SELECTION

5.1 Analysis of Variance
The standard deviation for any observed variable A is

written

sA = E[(A− E[A])2] = E[A2]− (E[A])2, (4)

while the covariance between two variables A and B is

sAB = E[(A−E[A])(B−E[B])] = E[AB]−E[A]E[B]. (5)

The Pearson correlation coefficient, or, more simply, the
correlation, between any pair of variables A and B is written
as

rAB =
sAB√
sAsB

. (6)

R2, a scale-free measure representing the percentage of
the variance in the data that is explained by the model, is a
typical measure of the accuracy of the regression. Written
in terms of expectation values of the model prediction, Ŷ ,
and the dependent variable observations, Y , it is

R2 =
E[(Ŷ − E[Y ])2]

E[(Y − E[Y ])2]
. (7)

The greater the value of R2, the greater the goodness of fit
of the model. As is typically done, we use R2 as an objective
in automated model selection problems and their respective
algorithms.

5.2 Problem Definition
The heterogeneously-grained grouped variable time series

regression optimization problem can also be stated as fol-
lows: given the time series’ Y and X as discussed above, we
can find a set of dyadic lag intervals spanning the time re-
gion 0 < t < k. A set of grouped variables can be generated
from this set of intervals. While the algorithm does not di-
rectly attempt to generate a model to maximize the value of
R2, it assumes that the correlations between variables will
be relatively small given an ideal grouping.

Our algorithm works to find a set of dyadic interval vari-
ables that satisfy certain conditions. Firstly, the set does
not contain a direct or indirect parent node of any other
node in the set. Secondly, the average of rXY s for nodes in
the set is maximized over all other sets satisfying the above
condition.

More formally, we would like to find a set of dyadic inter-
vals S such that

arg max
S

1

|S|
X
X∈S

rXY (8)

with the condition that none of the intervals overlap.

5.3 Algorithmic Solution
We require the use of a lemma in the following discussion

of algorithms to solve the problem. First we would like to
show that if two dyadic lag window variables are merged
it is easy to recalculate the value of Pearson’s rXY for the
resulting grouped variable. In this case, rXY gives us an
easy-to-calculate local metric for the algorithm.

Assume that a = k2ν , b = (k + 1)2ν − 1, c = (k + 1)2ν ,
and d = (k + 2)2ν − 1 for some k and ν. If we are given
two adjacent dyadic lag window variables Xa,b and Xc,d,
and Xa,d is a parent dyadic lag window variable of Xa,b and
Xc,d, we try to calculate

rXa,dY =
sXa,dY

sXa,dsY
(9)

given sXa,bY and sXc,dY . In the numerator:

sXa,dY =2−ν
 
E

"
dX
i=a

XiY

#
− E

"
dX
i=a

Xi

#
E[Y ]

!
(10)

=2−ν
dX
i=a

sXiY =
sXa,bY + sXc,dY

2
(11)

so that effectively the covariance of a group variable that is
the average of its children is the average of the covariances
of the children.



In the denominator:

sXa,d = E

»“
2−ν

X
Xi
”2
–
−
“
E
h
2−ν

X
Xi
i”2

(12)

= 2−2ν
dX
i=a

dX
j=a

(E[XiXj ]− E[Xi]E[Xj ]) (13)

= 2−2(sXa,b + sXc,d) + 2−2ν
bX
i=a

dX
j=c

sXiXj (14)

while sY is independent of the variable grouping. Thus we
are provided with an efficient method for computing the cor-
relation for a grouped variable when the correlation for its
constituent variables has been calculated. When the covari-
ances used in the expression for calculating sXa,d are known,
the correlation of the parent group variable can be found in
(2ν−1)2 = 22ν−2 steps, up to a constant.

The algorithm that we propose is similar in spirit to many
stepwise regression methods. However, typically, stepwise
regression methods require that one or more regressions are
performed at each stage when a variable is added or re-
moved. Our method sacrifices the accuracy of calculating
and comparing the partial correlations of variables to be
added or removed from the model. It makes gains in effi-
ciency by avoiding the extra regression calculations.

To achieve this, the algorithm will use the dyadic interval
tree as its main data structure. At each node x in the tree we
shall keep a list of the set of nodes in the subtree rooted at
x for which the average of the rXY s is the greatest, and for
which the time lag variable grouping conditions given above
are satisfied. We shall also store at each node the maximum
average of the rXY s, called ρ, to make for easy comparisons.

The algorithm proceeds as follows:

1. We begin with the full set of ungrouped predictor vari-
ables for which ν = 0 and 0 ≤ k ≤ N − 1. These
variables are the leaves of a dyadic lag interval tree.

2. Beginning with the parent nodes of the leaves, the cor-
relation rXY of each variable is calculated.

3. For each parent, its correlation is calculated.

4. Pairs of variables are grouped and removed from the
model and replaced with their parent lag time win-
dow variable if the average of the correlations of the
children’s subtrees is less than that of the parent.

5. The process is repeated until the root of the tree is
reached.

In order to conveniently track the sets of variables to be
included in the model as the tree is traversed, we add the
following step

1. For each node x that has children y and z, ρx is set to
be the greater of (ρy + ρz)/2 and rx. if rx is greater,
the set sx is set to the singleton x. If the sum ρy + ρz
is greater, then sx is set to the union sy ∪ sz.

Code for the algorithm is given in Figure 1. Once the
correlation rXY is calculated for individual lag times in the
time series, it can be calculated for groups of these param-
eters without recalculating sums of squares for the groups.

Once rXY is calculated for various group sizes, a tree of
Pearson’s rXY s is generated. At the root of the tree is rXY
calculated using the median of the predictor time series over
all time samples. The leaves of the tree are rXY values for
each sample.

At the root level of the tree (n/2)2 = n2/4 operations are
required to calculate rX1,nY . At the next level 2(n/4)2 =

n2/8 are required, and so on. This comes out to

n2

4
+
n2

8
+
n2

16
+ . . .+

n2

2n
∈ O(n2) (15)

This is compared to the complexity of a standard all sub-
sets model selection technique. We calculate the complexity
if all dyadic predictor groups are regressed over. Let Si be
the number of subsets for a dyadic tree of height i. Con-
sider the two subtrees of height i− 1. Each has Si−1 dyadic
interval subsets, so, in combination, a covering subset can
be generated from any pairing of a subset in the left subtree
and a subset in the right subtree. The singleton subset con-
sisting of the root node is also a covering subset. Therefore
we can write the total number of possible covering subsets
using the following recurrence:

Si = (Si−1)2 + 1 (16)

so that

Slgn ∈ O(22lg n

) = O(2n). (17)

The all subsets method would require that a full regression
is performed for each subset. To perform these regressions,
covariances between the new group variable and all other
variables must be calculated. Additionally, even if we ig-
nore the complexity of the multiple regression steps in step-
wise regression methods, our scheme already provides major
efficiency savings.

6. EXPERIMENTAL RESULTS
Our experiments use data from the PhysioNet project [6].

PhysioNet provides free access to medical and physiologi-
cal signal datasets and open-source software for analyzing
them. The associated PhysioBank database is a archive of
physiological signals provided freely to the biomedical re-
search community. PhysioBank has many multi-parameter
datasets useful for correlation and regression studies. The
datasets are from both healthy subjects and from subjects
with various medical conditions. It contains cardiopulmo-
nary data, neurological data, and even gait databases, and
many datasets include professional annotations.

For our study we used a dataset from the MIMIC database,
which contains medical signal data from ICU patients. It
provides three-lead EKG, respiration, arterial blood pres-
sure, pulmonary arterial pressure, central venous pressure,
and fingertip plethysmograph data sampled at 125 Hz. In
our experiments we used the respiration signal, RESP, as
the independent predictor variable, and the arterial blood
pressure signal, ABP, as the dependent variable.

10000 samples of a MIMIC dataset were used to construct
a time series to be fit to a bivariate distributed lag linear
model. The use of a finite distributed lag model requires
the selection of a lag cutoff point beyond which there are no
lagged variables. For simplicity, in this case, we chose a lag
cutoff of 512 samples, or 4.1 seconds. Initially, if no variable
grouping is performed, this generates a linear model with



Require: e.r ← rXa,bY for group variable Xa,b represented
by e. For simplicity n = 2ν for some positive integer ν.

Ensure: e.S is an non-overlapping subset of the dyadic in-
terval group variables in the subtree rooted at e which
maximizes the average of rXY . e.ρ is the maximum av-
erage of rXY achieved by S.

1: T ← a complete binary tree with n leaves; each node
e ∈ T represents a dyadic group time lag variable.

2: T.depth(d) returns all nodes at a given depth
3: for all e ∈ T.depth(logn) do
4: e.ρ← e.r
5: e.S ← {e}
6: end for
7: for j = logn− 1 to 0 do
8: for all e ∈ T.depth(j) do
9: if e.r > (e.leftchild.ρ+ e.rightchild.ρ)/2 then

10: e.ρ← e.r
11: e.S ← {e}
12: else
13: e.ρ← (e.leftchild.ρ+ e.rightchild.ρ)/2
14: e.S ← e.leftchild.S ∪ e.rightchild.S
15: end if
16: end for
17: end for

Figure 1: The model selection algorithm

512 variables. With the lag, this generates 9488 separate
cases to be used in the multiple regression.

We begin by generating the absolute validity rXY for each
variable in this 512 variable model. For each adjacent pair
of lag variables, we then compare the average validities of
the two with the average validities of a variable that is the
average of those two variables. The grouped variable is the
parent of these two variables in the dyadic interval tree. If
the validity of the parent is greater than the average validity
of the two children, the parent group variable is chosen for
the linear model over the two child variables. This process
is performed for all variables in the 512 variable model. It is
then repeated for all variables at the 256 variable level. This
process is repeated at all levels up to the univariate model
with a single group variable for all 512 lag samples.

The procedure was performed for the time series generated
from the MIMIC data set. Figure 2a shows a plot of group
variable lag position against group size for all variables in
the model generated by our algorithm. Figure 2b shows the
absolute validities for each grouped variable in the resultant
model as a function of start lag of the group.

After the model selection process, a regression is per-
formed using the selected model and the data used to gener-
ate it. We performed the regression using the freely available
statistical computing environment, R [11].

For the typical metric for the goodness of fit of a regres-
sion, R2, the model generated by the method had a score of
0.41, which indicates that 41% of the variability in the ob-
servations of R was represented by the model. For the inter-
cept, β0, and for variables representing the first 39 samples
of respiration data taken before the blood pressure reading,
the confidence in the model is high. However, for variables
representing time lags longer than this, the t test confidence
levels decline rather quickly. High confidence returns after
a time lag of around one second, and continues for the most

part until the time lags in the model end at the 512th sam-
ple.

The performance of the model produced by our grouping
algorithm is compared to various models of equal group sizes
and their performance on the same data. Figure 3a shows
the R2 values for regressions using models with equal group
sizes for various group sizes. It is seen that R2 peaks at 0.55
for the model of group size 1 with 512 predictor variables.
The value of R2 of 0.41 for the model generated by our
grouping algorithm is competitive with that reached by the
best of the equal group size models.

Figure 3b shows the average of |t| over all predictor vari-
ables for each equal group size model tested. Larger values
of |t| indicate better significance of the predictor variables.
Our algorithm produced a model for which the average of
|t| was 6.04. We note that for equal group sizes, many of
the models with higher average |t| have lesser values of R2.
Overall, it appears that the grouping method has struck a
balance between finding a model that explains the variance
of the data and one whose predictor variables are significant.

7. CONCLUSION AND FUTURE WORK
In this paper we have demonstrated an efficient method

for model selection among sets of grouped parameters. The
method is applied to distributed lag time series models and
data, specifically biomedical and physiological time series
data. We found that our method for grouping parameters
achieved a reasonable goodness of fit according to standard
measures. In the data set examined, the model achieved
a multiple R2 of 0.41. Many of the grouped variable sets
produced by the algorithm sufficiently passed t tests for sta-
tistical significance.

However, many improvements are possible in future work.
We would like to consider problems related to multicollinear-
ity both in the endogenous and the exogenous time series.
Differencing will likely make an improvement in the qual-
ity of these regressions. As well, because of the regularity
in certain types of physiological data such as blood pres-
sure measurements and respiration, we would like to con-
sider “seasonality” and periodicity issues in medical time
series, and removing seasonalities before carrying out the
regression. The grouping method may also be combined
with standard methods for distributed-lag regression. Ef-
forts to utilize polynomial-lag models in studies of medical
and physiological signals are currently underway.
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