
Smith ScholarWorks Smith ScholarWorks

Computer Science: Faculty Publications Computer Science

2024

Extreme Ungrading: Rewilding the Classroom through Human-Extreme Ungrading: Rewilding the Classroom through Human-

Centered Design Centered Design

Johanna Brewer
Smith College, jbrewer@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Brewer, Johanna, "Extreme Ungrading: Rewilding the Classroom through Human-Centered Design" (2024).
Computer Science: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/385

This Conference Proceeding has been accepted for inclusion in Computer Science: Faculty Publications by an
authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/385?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu

Extreme Ungrading: Rewilding the Classroom through
Human-Centered Design

Johanna Brewer
jbrewer@smith.edu

Smith College
Northampton, MA, USA

ABSTRACT
Assessment in computer science education has grown reliant on
rigid rubrics and intensive exams, a practice that yields capable
yet compliant coders. In this article, I explore how we might use
human-centered design to reexamine contemporary pedagogy and
redesign our classrooms to cultivate a different type of programmer,
one with amore critically engaged eye. Inspired by the ethos of agile
development, I offer an alternative evaluation paradigm: Extreme
Ungrading. Exploring results of a two-year case study applying
this method to a software engineering class, this article distills
actionable guidelines for enhancing learning outcomes through
inclusive course development, and seeks to spark debate about our
duty as scholars of HCI to reshape computer science education.

CCS CONCEPTS
• Human-centered computing; • Social and professional top-
ics→ Computing education;

KEYWORDS
ungrading, inclusive pedagogy, human-centered design, computer
education
ACM Reference Format:
Johanna Brewer. 2024. ExtremeUngrading: Rewilding the Classroom through
Human-Centered Design. In Extended Abstracts of the CHI Conference on
Human Factors in Computing Systems (CHI EA ’24), May 11–16, 2024, Hon-
olulu, HI, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3613905.3644048

1 INTRODUCTION
Computational technology has undeniably revolutionized human
interaction; the world is now awash with the products of real-time
remote collaboration. As startups bloom and FAANG corporations
boom, newly graduated software engineers, AI researchers, UX
designers, infosec officers, data scientists, and system administra-
tors find themselves powering the 21st century’s radical and rapid
transformation. Though much has changed in society since I was
a college student during the first dotcom bubble, computer sci-
ence instruction has remained remarkably unaltered in the decades
following that burst. Transparencies on overhead projectors have

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0331-7/24/05
https://doi.org/10.1145/3613905.3644048

been replaced by wireless tablets projecting digitally, and commu-
nal SPARCstations clustered in basement labs have given way to
laptops nestled in backpacks. Yet, just as the fundamentals of logic
and control structures stayed the same, so too have the ways for
assessing mastery of core computing concepts. In this article, I
will explore how the lens of human-centered design might be used
reflexively to reframe the pedagogical purpose of assessment, and
to refocus attention on our interdisciplinary obligation to gradu-
ate young scholars who can not only competently create, but also
carefully critique, the next generation of tech.

1.1 The Art of Assessment in Computer Science
Grading in the field of computer science has long relied on rubrics
that break down the scores for programming assignments into
myriad specific logical or syntactical requirements (with individual
point values) in an effort to produce “objective” evaluations [1]. But
in the late 20th century, as instructors found themselves lecturing
to hundreds of students who were producing thousands of lines of
code, many CS departments grappling with that growth attempted
to maintain rigor in their grading practices by tasking student teach-
ing assistants with assessing the work of their juniors according to
those professor-defined rubrics [31]. Following its release in 1997,
many grading workflows began to rely on Alex Aiken’s Moss (Mea-
sure Of Software Similarity) system for detecting plagiarism; in
short order computer-assisted evaluation of student code became
the norm [9], and scholars began to pursue the development of
automated grading tools as an efficient and equitable approach to
the scalability issues they were facing [13, 14].

The impulse to thoroughly quantify the performance of CS stu-
dents stems not least from a love of decomposing problems into
fundamental, modular components. Coders are taught to separate
their concerns and so it seems logical in a discipline owing its exis-
tence to the binary system that professors would devise a bitwise
approach to assessment. Yet, technologists also celebrate intuitive
interfaces, algorithmic creativity, and elegant code, qualities of ex-
cellent programming which remain difficult to define in a rubric,
let alone grade automatically. Any given framework of evaluation
will produce different results, and as its effects compound over
time, a particular sort of code, and coder, will emerge as the opti-
mal outcome of the system. If we assert that objective assessment
of software is not only possible but preferable, and if we aim to
build fully-automated massively-scalable scoring solutions to ren-
der those judgements, what sort of developers do we expect such a
learning process to produce? How might we use a human-centered
approach to reexamine contemporary pedagogy and redesign our
classrooms to cultivate a different type of coder?

https://doi.org/10.1145/3613905.3644048
https://doi.org/10.1145/3613905.3644048
https://doi.org/10.1145/3613905.3644048
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613905.3644048&domain=pdf&date_stamp=2024-05-11

CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Johanna Brewer

1.2 Graduating into the Automation Generation
As it stands today, only 21% of computer science bachelor’s degrees
are awarded to women [16] and just 28% of Silicon Valley profes-
sionals are female; Latinx (5%) and Black (3%) folks are similarly
underrepresented in the workforce, with numbers of Native Ameri-
can and non-binary coders so small they are often unreported [37].
The discipline is described by many students as unwelcoming, and
though hiring bias affects all industries, it seems rather insidious
when big tech companies publicize flashy diversity-building initia-
tives, even soliciting recruits to build software that will supposedly
help eliminate bias, while perpetuating the problem through their
own internal talent acquisition practices [11].

Tech has earned a reputation for being toxic, thanks in part
to the grueling hazing-like hiring process of technical interviews
popularized by big corporations, where candidates solve their way
through an onslaught of standardized toy problems like a “gladia-
tor fighting in the Colosseum for entertainment” [5]. This process,
though purported by managers to be objective, meritocratic, and
scalable, does not remotely resemble realistic scenarios that work-
ing developers encounter, and is frequently described by candidates
as highly subjective, quite stressful, and distinctly non-inclusive.

On its face, striving for universal standardization, full automa-
tion, and reliable replication of code(r) evaluation sounds appro-
priate for a discipline rooted in logic, but pursued uncritically and
exclusively, such intentions, noble as they may be, produce unfa-
vorable and unsustainable outcomes. In a labor landscape where
stable jobs of yore have been replaced by piecemeal precarious gig
work [30], six-figure software design salaries represent one of the
last attainable pathways to a better quality of life for marginalized
students. But as the churning wheels of platform capitalism turn
their strategies of disaggregation and depersonalization on the pro-
grammers it once prized, aspiring developers now find themselves
contending with increasingly exploitative working conditions [32].

Academic information & computer scientists have both a unique
opportunity and, I argue, an urgent obligation, to intervene in
the calcification of this compliant coder pipeline. Rather than dou-
bling down by teaching to the Leetcode test, instructors–especially
those specialized in HCI–could do well to explore how the creative
reimagining of our existing pedagogical systems might represent
a viable means of reprogramming the status quo [10]. Indeed, this
necessary reexamination and redesign of our culture of assessment
has already begun; it can perhaps be best evidenced by the growing
interest in ungrading as an alternative to traditional evaluation.

2 UNGRADING 101: A BRIEF SURVEY
Ungrading is not new, but it has been gaining popularity in higher
education over the past five years after professors like Susan D.
Blum [8] and Jesse Strommel [35] began speaking openly about
their adoption of the practice and how it benefits learning outcomes.
Though there is no formal definition, ungrading is generally un-
derstood as assessment that minimizes (or eliminates) point-based
scoring of student work in order to emphasize formative feedback.
Ungrading is an umbrella term for a pedagogical attitude that ques-
tions the contemporary function of assessment; it encompasses a
range of practical approaches including: mastery grading, contract
grading, standards-based grading, and specs grading.

Alternatives to the “traditional” quantitative assessment scales
of 18th and 19th centuries have been in development for decades.
Benjamin Bloom first introduced mastery grading in 1968, argu-
ing against the acceptance of the bell curve by asserting that the
overwhelming majority of students should be able to be achieve
A-level mastery of the material given the right environment and
sufficient time [7]. He championed the importance of defining clear
specifications for learning objectives so that students themselves
can comprehend if they have mastered the material. Linda Nil-
son built on this foundation by proposing specifications grading:
a method of evaluation where students receive detailed specs for
acceptable completion of assignments (typically to the B-level) and
then complete modules (bundles of assignments) assessed Pass/Fail
to demonstrate mastery of key learning concepts [28].

When implemented, these foundational forms of ungrading un-
derscore not just the viability of assessment alternatives, but also
the vitality they bring to the classroom. Seeing weaknesses in the
constraining frame of 100-point grading, Joe Feldman shared an
extensive discussion of how transitioning to standards-based, sim-
ple, 0-4 scale led to a more equitable learning environment [15].
Though focused on K-12 contexts, Feldman’s work offers evidence
that ungrading can increase inclusion, which is precisely what CS
departments striving to close the representation gap hope to achieve.
However, thanks to their collective tendency towards automation,
the gap between traditional grading and ungrading may be wider
in computer science & informatics than any other academic fields.

It is perhaps unsurprising, then, that much of the ungrading
discourse in higher education has been driven by humanities and
social sciences faculty who have years of experience iterating their
techniques [18, 21, 23]. English professors, for example, describe
effective methods for leveraging peer review to teach students to
write for a broader audience than the course instructor–an approach
that can usefully be adopted by other communication-focused dis-
ciplines. Yet, while code reviews and design crits have come to
serve as important means of formative assessment in many CS
classrooms, they cannot suffice for summative assessment when all
the peers are novice “speakers” of the programming language or
framework. Specialized techniques for adapting an ungrading ap-
proach to the rigors of the field are clearly required. Fortunately, we
can look to recent reports from STEM instructors, especially math-
ematicians and chemists, who have provided inspiration by sharing
candid reflections on their methods for ungrading in courses with
significant technical content [12, 19, 22, 26, 33, 36]. These fields are
also known for their rigid rubrics and grueling examinations, but
these instructors report that relaxing their reliance on providing
point-based assessments has helped reduce students’ grade anxiety
and increase their engagement with the challenging material.

2.1 Deprogramming in Progress
Despite the fact that computer scientists were the first to automate
assessment, they have an equally long history of working on ways
to shift students’ mindsets away from accumulating or collecting
points and towards mastering core concepts [39]. Mastery grading
has been applied in computing classrooms since the 1990s, but most
examples of the practice focused on introductory programming or
courses for non-majors [17]. Indeed, when ungrading is applied in

Extreme Ungrading: Rewilding the Classroom through Human-Centered Design CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

information & computer science, typically it is in the context of
converting introductory courses from letter grades issued in the
ABCDE/F format to binary Satisfactory/Unsatisfactory (Pass/Fail)
scores in an effort to lower the barrier of entry to the discipline
[25]. Though the avant-garde of the field may appear to be lagging
behind the broader academic conversation, there is a significant
cohort of computer scientists swapping stories about radically refac-
toring their approaches to assessment [24], including those who
have been organizing a yearly hands-on workshop for introducing
specifications grading to CS courses since 2019 [27].

Andrew Berns, for example, described reducing grading load
while increasing comprehensive coaching through the development
of a binary assignment grading system where students completed
a defined number of activities Satisfactorily to earn a given letter
grade for a course [6]. Karina Assiter similarly demonstrated how
eliminating the grading of formative assessments and reducing the
weighting of exams in favor of projects was able to increase reten-
tion of diverse learners in a variety of CS courses [2]. At the 2023
meeting of SIGCSE, Scott Spurlock shared how an approach that
eliminated numeric grades, allowed resubmission of assignments,
and encouraged students to give input on their final letter grade,
served to improve overall student motivation towards tackling the
challenging material of upper-level courses [34]. And at the same
conference, Ella Tuson and TimothyHickey presented their findings
from experimenting with a mastery approach by applying specs
grading to a software engineering course over 140 students [38]. In
their semester-long trial, they too were able to reduce their grading
burden while maintaining academic rigor, and plan to continue
iterating their practice.

2.2 Addressing Alternative Assessments at CHI
There is clearly mounting evidence that moving beyond a piecewise,
depersonalized, automated approach to assessment offers tangible
benefits for students and instructors of computing alike. Yet there
has been comparatively little discussion at CHI about the design of
our courses and sparse debate about the responsibility we have as
scholars of sociotechnical systems to contribute to the development
of pedagogical best practices for computer science education. Rich
Halstead-Nussloch and William Carpenter’s work from CHI 2002
offers a rare example of a piece focused on instruction; in their short
paper they describe applying a Bauhaus, studio-oriented, model
to their classroom that encouraged the development of individual
mastery in a collaborative team environment [20].

In a similarly brief 2017 CHI Note, Mihaela Vorvoreanu and co-
authors present a focused case study that takes an integrated studio
approach to UX education [40]. Their short paper was intended
to define a space for pedagogical research at CHI, but it seems
that objective remains unrealized. As we have seen, most research
regarding computing pedagogy is shared at education-focused con-
ferences. It is of course excellent to see innovative methods like
GenderMag–a tool for teaching inclusive design to HCI students–
being presented to the broader CS audience at ICER [29]. But with
this piece, I want to spark discussion amongst the vanguard of
our community, to unpack ungrading at alt.chi, and debate our
collective duty to reshape computer science classrooms.

3 EXPERIMENTINGWITH EXTREMES
Contemporary technology is rapidly reshaping our lives; today’s
coders must confront greater ethical, economic, and environmental
challenges than ever before. It is becoming clear that by shifting
the emphasis of assessment beyond syntax and structure, we can
hone a more holistic approach towards computing education–one
that develops skills like critical thinking, clear communication,
effective collaboration, imaginative problem-solving, and personal
responsibility. I would like to suggest that by leaning into this
human-centered pedagogy we can create more inclusive learning
environments that can be fertile grounds for planting seeds of
positive social change.

As a member of the faculty at Smith–a historically women’s
liberal arts college–I have the privilege to teach at an institution
that has been on a mission to shift the balance of representation
since its inception. By 2021 when I joined, the computer science
department had already made great strides in attracting a diverse
group of students; that year Black, Hispanic, and Native American
scholars made up 15% of our majors, 14% were Asian American,
6% multiracial, 36% of Smithies in CS were international students.
100% of those students were women, trans, and/or non-binary.

Yet even in an inclusive environment where the demographics
represent an impressive outlier for the discipline, the legacy of
traditional assessment can be felt. Students at a selective school
like Smith suffer higher levels of mental health challenges, espe-
cially those related to anxiety. Perfectionism and an obsession with
straight As run rampant on campus. As professors struggle to keep
grade inflation in check, we are often confronted by students experi-
encing real crisis over minor flaws with their academic performance.
When students are drilled with notion that every point counts, and
life-changing job offers are the winning prize for maximizing their
score, the bleak ramifications this unintentional gamification be-
come apparent.

Understanding the stakes after a decade spent as a startup CTO,
I am motivated to explore evaluation methods might be evolved to
better prepare students for the complexities that computer scientists
now face. Tasked with teaching human-computer interaction and
software engineering, I naturally planned to introduce students to
the Agile Manifesto and tenets of Extreme Programming [3, 4], but
I was also inspired by the crucial influence these frameworks have
exerted by distilling quietly radical principles from the cutting-edge
practices of their peers. Accordingly, I would like to offer for dis-
cussion my own parallel objectives–a set of mandates reimagining
the purpose of pedagogy to meet the moment of computational
revolution we find ourselves in.

Extreme Ungrading is a commitment to:
➊ Prepare students to thrive in industry or academia when they face

complex conflicts without clear guidelines to follow;
➋ Teach students how to self-direct their learning through fast failure

and not get hung up on appearing perfect;
➌ Orient students towards self-improvement and collective impact

by prioritizing demonstrable positive results over points;
➍ Foster collaboration between students with diverse skillsets & back-

grounds in a comfortable, yet challenging, environment;
➎ And, ideally, train students to accurately assess their work and

others’ based on observable outcome rather than effort.

CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Johanna Brewer

Following the fiat of this nascent framework, I have engaged in a
two-year experiment to rewild the CS classrooms at Smith College.
In the rest of this article I will explore the implementation of these
pedagogical principles by presenting an in-depth case study; over
the course of four semesters I attempted to validate this Extreme
Ungrading orientation by applying a human-centered approach
to the (re)design of an undergraduate software engineering class.
This piece explicates that iterative process and, by reflecting on the
outcomes, derives actionable guidelines for course development.

4 SOFTWARE ENGINEERING: A CASE STUDY
To encourage discourse about ungrading in the CHI community,
herein I describe howmy effort to design, test, and refine alternative
assessment techniques, in tandem with supportive curricular struc-
tures, unfolded over four semesters, from Fall 2021 to Spring 2023.
In the coming pages, I detail my exploratory experience guiding 113
students (avg. 28.5/semester) to mastering software engineering
fundamentals by eschewing exams and rigid rubrics in favor of
substantial assignments and scaffolded self-reflections.

Though I was certain after a decade away in industry that I
wanted to engage in ungrading upon my return to academia, I
was rather unsure of precisely what that would entail in practice.
Thus, my initial approach to ungrading was wildly experimental,
planned on the fly, and somehow both confidently bold and vaguely
indecisive. Candidly, when I began this study of Extreme Ungrading,
I was not quite sure how it should work, or even if it could work.
Yet by committing to an agile process of inclusive student-centered
curriculum design, I have developed a well-received course that
enables first-time full-stack developers to achieve outcomes which
continually exceed my expectations.

Following a participatory approach to the course design, I in-
corporated student perspectives from the start. Rather than im-
plementing classroom policies that are often syllabi boilerplate,
I took cues from universal design to maximize the overlap with
the most often used academic accommodations. Before the course
began, I circulated an intake survey; and class concluded with a
detailed retrospective survey in addition to the college’s formal
course feedback form. Throughout the semester I solicited feedback
from students through in-class polls, chat server discussions, and
office hours. I took copious notes about student performance during
and after classes; and I kept a running log of changes I planned to
make for the subsequent semester as the course unfolded. Finally, I
sought input from four colleagues who observed my pedagogical
practice on three occasions.

4.1 First Run “Into the Wilds” (Fall 2021)
My first semester at Smith, I had the opportunity to redesign our
software engineering course. Mastering this branch of CS means
moving beyond solving single problems with short programs, to
building systems tackling novel issues with thousands of lines of
code, running on globally distributed machines, connecting poten-
tially billions of users. Such a massive jump in scale necessitates
learning new techniques to design applications that can be built
by a team. The hard part of software engineering is drawing a
reasonable map to success that a group of developers can execute

together, so giving students a pre-determined rubric of todos would
only undermine their ability to acquire those skills.

My aim with this updated course was to simulate the experience
of a junior developer who joins a new team building a speculative
product in an unfamiliar framework. Students begin by setting up
their individual development environments to get familiar with the
Ruby on Rails stack, then shift to working in teams of 4-6 to specify,
plan, and build a unique bike sharing service designed to serve the
community of a fictional region, Nipmuc Notch, resembling the
area around our campus. The class is meant to prepare students to
collaboratively learn on the job, cope with the inherent uncertainty
of engineering, and deliver functional software ready to be deployed
“in the wild” while working in messy conditions under realistic
constraints. My motivation for ungrading was to inspire students to
earnestly try (and fail) to put software engineering techniques into
practice “for real” to produce tangible outcomes, rather than earn
points by jumping through well-defined hoops of implementation.

It was this intention I attempted to communicate from the start.
Before the first meeting I had students complete a survey rating
their skill level on a variety of software engineering topics (e.g. agile
development, pair programming, wireframing, version control) to
establish a baseline of their abilities. Evaluation forms like these
took the place of exams, and I made clear we would conduct self
and peer reviews throughout the semester. I explained each weekly
2.5 hour session would follow a workshop format, beginning with a
short lecture to unpack the readings, then switching to collaborative
hands-on activities putting those learnings into practice.

Given that building a working software system was their over-
all goal, I stated that assessment would be weighted: 50% major
project; 25% reflections & report; and 25% participation. I explained
I would provide assessments for their work on a simple scale of:
Needs Improvement; Meets Expectations; Exceeds Expectations;
and Distinguished. Stressing I could only differentiate software at
granular levels, I indicated this scale loosely mapped to C at the
low-end and A/A+ at the high-end, and repeatedly assured students
that “anyone who Meets Expectations will earn a B or better.”

During the course’s first half, students focused on acquiring foun-
dational knowledge and finding teammates. They were assigned
two chapters each week, given optional technical trainings, and
required to submit 200-300 word reading reflections to prepare for
in-class activities. In the first three weeks, I intentionally shuffled
students into different work groups and organized sharing circles,
giving them ample structured opportunities to meet. Students then
filled out a group preferences survey to describe their working style
and skills, indicate which classmates they would like to collaborate
with, and mention anyone with whom they could not be produc-
tive. Using their stated predilections, my own observations, and the
results of their first local stack configuration assignment, I sorted
the students into scrum teams of 5-6 developers who would work
together for the remaining 10 weeks of the semester. My strategy
was to match students with compatible skill levels and social affinity
into productive “rowboats” that could pull in harmony.

Group projects often make students shudder, but when teams
were announced and sent on their first mission (to observe a com-
petitor’s bike share system), there was enthusiasm in the air. On the
other hand, the reading reflections produced much more anxiety
despite being low-stakes assignments where nearly everyone Met

Extreme Ungrading: Rewilding the Classroom through Human-Centered Design CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 1: Comparison between students’ average desired and
actual final grades across four semesters, with normalized
computed scores for reference.

Expectations. Some worried students asked how submissions that
Exceeded Expectations could become Distinguished, and finding
myself struggling to assess that ineffable difference, to ease the ten-
sion I informed them mid-semester they could resubmit any past
reflections. Nonetheless, the amount of emotional energy we spent
on those short writing exercises made it clear my methodology
required further refinement to vent pointless pressure.

Fortunately, the success of ungrading the major project was far
more definitive. I broke the group effort to develop a Ruby on Rails
bike sharing application into four parts. Each assignment included
a list of specifications for a deliverable (typically a mix of code,
documentation, and retrospective) that would Meet Expectations,
but there were no guidelines for the higher tiers. Students received
detailed written feedback on their submissions, and clearly focused
on that qualitative criticism. Many enthusiastically attended my
office hours, packing into the room with questions about improving
their work as they advanced through phases of the project.

Yet, as the students completed their prototypes they seemed
unsatisfied with their progress. Ruminating, I resolved to commit
more decisively to ungrading, and announced that their final ret-
rospective assignment would ask for input on their letter grades.
Though I would reserve the right to determine grades as I saw fit, I
informed students I would take their self-assessments seriously if
they made a clear case about performance with respect to the guide-
lines laid out in the syllabus. This late-game decision was partially
a way to deal with the creeping anxiety around reading reflections,
but mostly it was to show the students that I truly meant it when
I said my primary concern was about developing their senses of
self-awareness, creativity, and resilience as software engineers.

All of my emphasis on embracing and pushing through failure to
produce tangible results seemed to really pay off. As teams shared
their Minimum Viable Products (MVPs) during our final class demo
day, there was a mutual understanding among peers about whose
software features were most impressive and why. Exiting the room
there was a palpable energy of shared respect for what they had all

Figure 2: Distribution of deltas between students’ desired and
assigned final grades, compared across four semesters. Nega-
tive values indicate lower final grades than desired, positive
values correspond to final grades higher than requested.

achieved: designing and building a real piece of functional software
from nothing–with some even deploying it on the world wide web.

Given that asking for student input on grades was a surprise
twist, I needed to fold a new layer into my nascent ungrading
system.When it came time to submit final evaluations, I approached
the matter as a fitting problem. First, I translated my simple scale
into grade points, weighted the assignment scores, and calculated
the computed grade for each student. Next, I compared that score to
the desired grade submitted in their self-assessment and examined
the delta. Taking the justifications about their learning efforts and
outcomes into account, and reflecting on their performance over
the semester, I then assigned a final letter grade for each student
(see Figure 1).

Receiving no change requests or complaints, it seemed students
found the assessments fair. I agreed, judging them “more fair” than
the computed or desired grades alone. Though I had sometimes
struggled to evaluate students’ work in isolation, reading the self-
assessments offered deeper insight on their grasp of the material.
While in some cases a student’s overly inflated sense of accom-
plishment was evidenced by thin justifications of progress, in sev-
eral instances students had actually undervalued their substantial
achievements. Yet on the whole, self-assessments tended to concur
with mine: 48% of students desired the final grade they got; 29%
had asked for a higher final grade than they received; and 23% had
requested a lower grade than what they ultimately earned. The
adjustments I made were minor, redistributing slightly over- or
under- confident students by just 0.3-0.4 grade points (see Figure 2).

Perhaps more important was their feedback. Students offered
final reflections that spoke directly to my pedagogical goals, de-
scribing the class as a “welcoming, effective learning environment”
where they had a “safe, positive experience working in a software en-
gineering team.” Many were empowered by their accomplishments,
feeling “fulfilled and validated applying my skills in a real world
setting” in a course “as close as you’ll get to a software engineering
internship without an actual job.” My wild swings were connecting,

CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Johanna Brewer

and so despite my extremely experimental approach to ungrading,
I finished the first semester unexpectedly assured by the outcomes.

4.2 Second Iteration (Spring 2022)
Reflecting on my ad hoc experiment, for the second semester I
endeavored to establish the ungrading setup clearly from the start.
Students were informed on the first day that they would give input
on their overall letter grade in their final self-assessment. And
in addition to the in-class and assignment retrospectives of the
previous iteration, I also added a substantial midway self-review to
give students the opportunity to contemplate and course correct.

Assignments and assessments followed the same arc as the prior
term, but I shored up the structure. First, I provided a mapping
between my simple scale and traditional letter grades: Needs Im-
provement (C) | Meets Expectations (B) | Exceeds Expectations
(B+/A-) | Distinguished (A/A+). Then to further reduce grade anxi-
ety, I stressed reflections were meant to be low-stakes, included new
prompts in the instructions encouraging open-ended responses, em-
phasized to not sweat the assessment, but instead focus on engaging
with the readings. For all individual assignments I adopted a clear
late is better than never policy, allowing students to submit any solo
work up until the last day of class for full credit. Finally, I made
the three Ruby on Rails framework training modules mandatory
assignments, only assessed on a Complete/Incomplete basis.

Adding these guideposts resulted in several positive changes.
Anxiety over assessment of individual assignments was refreshingly
reduced. Only a few students inquired about improving, and I over-
heard peers assuring each other not to worry about Distinguishing
themselves since it was not a big deal. The quality of reflections was
unchanged, but I agonized less over scoring them and completed my
evaluations faster, allowing time for deeper feedback on the major
project. Though there was technically more assignedwork, students
had fewer complaints about the load. More explicit scaffolding and
expectation setting sprinkled throughout the course (like weekly
timeline reminders, hourly targets for assignments, and code speed
estimation guidelines) resulted in lower stress levels for students
and myself. This improvement, in hindsight, seemed to reflect the
basics of technical team management. Providing clearer policies
while shifting responsibility and agency to the students ultimately
resulted in a better experience on both sides of the lectern.

While the improvements were notable, I do not want to give the
false impression that effective ungrading eliminates student anxiety.
Rather, I suggest it has the potential to redirect fears towards more
productive ends. Students came to my office hours anxious about
the right things: that they were not grasping the material, that they
were letting their teammates down because they lacked skills or
confidence, that they were not managing their time properly. We
developed strategies for tackling their troubles together and then
they successfully implemented them on their own.

Teams took our final demo day even more seriously, especially
given that I raised the stakes by announcing they would choose a
winner. One group made entrepreneurial use of campus resources
to print stickers for their service and every team seemed to put extra
polish into their pitch. As I tallied their votes for the Most Valuable
Minimum Viable Product (MVMVP), it was clear that they had
developed the discerning eyes of well-trained software engineers.

Seeing students accurately evaluate and appreciate their peers’
work was an excellent outcome. Curiously though, this cohort was
both more accurate and generous assessing their own performance:
56% of students desired the final grade they got; 30% had requested
a higher grade; and 15% under-valued themselves. Though the per-
centage of students whose assessments matchedmine increased, the
variance of those who missed the mark also grew. Several students’
desired scores varied from their final ones by 0.6 or 0.7 points, and
one student under-sold themselves by an entire letter grade. Despite
needing to make such significant adjustments in a few cases, I once
again received no complaints, bolstering my confidence that the
ungrading methodology was, in fact, producing reasonable results.

4.3 Third Trial (Fall 2022)
Going into the third semester, I resolved to further hone the un-
grading methodology by focusing my attention on improving the
overall quality of student work. In an effort to increase interactivity
during our weekly reading recaps, I reduced the required length
of reflections to 100 words, and shifted to having students share
them semi-publicly in our class Discord (chat server). Instead of
assessing their quality, I only marked reflections for completeness,
and used their thoughts to spark deeper discussion during lecture
by breaking the ice through asynchronous participation.

To foster further support for reflection, I required short retrospec-
tives with the training assignments, organized additional in-class
code reviews, and expanded the midway self-reviews. In those, I
asked students for a simple scale self-assessment, target final grade,
and resolution for changes necessary to achieve that goal. The
increased emphasis on self-examination and peer review led to
more meaningful engagement with the material. By the time the
students voted theirt MVMVP on demo day, I was again thoroughly
impressed by their achievements. Several groups had implemented
more robust, feature-rich bike sharing apps than those before, and
I was thrilled to witness this new level of complexity.

Wanting to continue providing ample feedback on the final
projects, while not getting bogged down in the details assessing
their relative merits, I opted to create a thresholded checklist to
streamline the quantitative component of my evaluation. Relying
on the outcomes of the previous year’s projects, I developed a set
of clear criteria that would be marked as either fulfilled or not, and
outlined tiers of completeness corresponding to my simple scale.
This rarefied rubric allowed me account for the more outstanding
applications produced that semester, while ensuring I could focus
on giving all the teams a comprehensive review.

Surprisingly, as the quality of their work increased, so too did
the generosity of their self-assessments. In this permutation of the
course: 44% of students received the final grade they desired; 47%
over-estimated their abilities; and 9% underrated their skills. Given
that these students represent the pandemic microgeneration, it is
possible the miscalibration between effort and outcome stems from
spending the first years of college in the vacuum of Zoom. Yet again,
I received no complaints about the adjustments I made, though one
student, acknowledging that their group project participation had
not been ideal, asked how they could have earned a higher mark.
When I reiterated that their communication skills, key to software
engineering, needed work, the next semester they came to my office

Extreme Ungrading: Rewilding the Classroom through Human-Centered Design CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

hours for tips to improve. Overall, I was pleased with the enhanced
caliber of the final projects, and proud to see what the students
could do when their minds were freed to focus on what matters.

4.4 Fourth Refinement (Spring 2023)
Entering the fourth round of my experiment with far more cer-
tainty than I began, I concentrated on raising the quality of student
work further, this time adding more interactivity and evaluation
signposting. By updating two early in-class exercises, I created
more opportunities for communication and collective skill building,
which in turn improved overall camaraderie. Perhaps more signif-
icantly, by including new assessment overviews for assignments
that defined the criteria for Meets, Exceeds, and Distinguished
submissions, student anxiety around grades all but vanished. Ap-
prehension around evaluation was fully eclipsed by a healthy sense
of collaborative competition to achieve mastery of the material.

As teams reviewed each other’s prototypes or gathered around
for my seasoned consultations on their code, the atmosphere of
peer support was palpable. And by the end of the term, the students
had once again bested their predecessors, producing several final
projects which exceeded the benchmarks of the previous semes-
ter’s rubric. Here too as their capacity for growth heightened, so
to did their sense of accomplishment: while 41% of students got
the final grade they desired; 50% had asked for a higher one; and
9% undersold their achievements. Though I remain unsure about
the source of this over-correction, there were again no objections
to my adjustments, and overall even the students who had found
themselves struggling with the challenges of the course ultimately
had far better outcomes than before. As one explained: “The hard
times I had with my team were not failures, they were the best way
to learn invaluable lessons about teamwork. I’m a better program-
mer now, knowing software engineering isn’t easy, the processes are
frustrating and painful, but to me that is the best part!”

Taken to its extreme over the course of four semesters, my un-
grading methodology achieved many of the effects I envisioned.
In the absence in clear directions, while working through serious
communication challenges, this student learned to embrace failure,
and helped pull their team out of a nose dive to Meet Expectations
by demo day. Seeing a wide array of junior software engineers build
up resilience to the doubts and difficulties of the discipline, while
delivering delightful products with deep values, demonstrates to
me that Extreme Ungrading can indeed cultivate a different kind of
coder, one that I would like to have more of in this world.

5 EXTREME UNGRADING ELEMENTALS
Hopefully this two-year case study will serve to spark further dis-
cussion about how human-centered design can encourage us to
eschew our automated ways. In addition to the intermediate level
software engineering course, I have also applied this methodology
to an introductory programming class and an upper level human-
computer interaction seminar. Drawing on all those experiences, I
distilled four key elements of my Extreme Ungrading practice that
seemed most crucial to the student successes I observed.

❖ Simplified, straightforward, safe assessments. Shifting focus from
point-based evaluations towards qualitative feedback was the most

challenging and rewarding aspect of ungrading. Avoiding a piece-
wise approach, by opting for a holistic tiered system with a simple
scale, allowed the students to focus on achieving tangible outcomes
instead of nickle and diming over minutiae. Though freedom from
restrictive rubrics is a fundamental feature of ungrading, it was still
essential to provide students with a sense of guided security, so
they would feel safe to fail. Assessing low-stakes assignments for
completeness alone, and shifting the purpose of such work towards
enhancing classroom interactions, opened space for the trial and
error necessary for collaborative complex skill building. Offering
well-defined tiers for assessment for all the assignments made it
straightforward for everyone to understand when the bar had been
cleared. By ensuring that Meeting Expectations would earn a B,
while offering a forthright but formidable path for those seeking to
Distinguish themselves with an A, I crafted a classroom that had
both an accessible floor and a vaulted ceiling.

❖ Real-world deadline structure. Time management is critical to
software engineering, but my approach to teaching punctuality was
not punitive. Deadlines for all assignments fell on midnights before
class; and those due dates were laid out in a calendar revisited every
week. Giving students reasonable structure and clear cadence mod-
eled how they should pace themselves through a complex project.
Providing fixed deadlines for group deliverables encouraged stu-
dents to develop more self-awareness and personal responsibility in
their workload management. When showing up prepared became a
form of showing up for others, when class sessions were devoted to
demonstrating progress and helping peers improve, students expe-
rienced how shared deadlines functioned as collective goalposts. At
the same time, adopting a better late than never policy permitting
students to submit any individual assignments before the last day
of class (without penalty except delayed feedback) provided space
and incentive to master material they could not complete on their
first try alone. These twin policies made deadlines meaningful so
students held themselves accountable accordingly.

❖ Scaffolded, ceaseless self-reflection. Retrospectives may be sec-
ond nature for most agile developers, but regular intentional self-
scrutiny is not something that most computer science students
are yet in the habit of doing. Beginning in class, and continuing
with every assignment, requiring brief good thing, bad thing, better
thing retrospectives assessing personal progress constructively con-
strained students to keep track of their own growth. Charting their
advances through a triptych of deeper self-evaluations (including a
pre-class skill survey, a midway reflection, and a final self-team-peer
review) and pairing those with the weekly retrospectives created a
robust record of efforts and outcomes. Gaining such clarity on their
learning process enabled both myself and the students themselves
to more accurately assess the work they produced.

❖ Communication-oriented classroom culture. Acclimating com-
puter scientists to constructive critique was a crucial component
of my ungrading experiment. Offering qualitative evaluations on
major assignments created a key channel for formative feedback,
but it was merely one among many. By incentivizing students to
use the chat server to reflect and pose questions, by praising peers
who supported each other with advice, and by encouraging interac-
tions with their Teaching Assistants, I purposefully knit social ties

CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Johanna Brewer

between the engineers so they could learn collaboratively. Strategic
scrum team formation played a large role in the success of their
cooperations. Rotating students through workgroups early in the
semester and soliciting their preferences allowed me to place devel-
opers in productive pods. I continued that facilitation by helping
groups abide by their team contracts while pairing them into differ-
ent supergroups for code reviews. Underpinning all that organiza-
tion was my own mentorship-driven workshop-oriented method of
teaching. When working one-on-one, I engaged strictly in strong-
style pair programming (never touching their keyboards, ensuring
my ideas moved through their hands); I consistently encouraged
students to attend office hours in groups and held regular open
code consultations during class. Walking the floor and talking shop
with the students reframed my role from austere overseer to ap-
proachable advocate; and opening the lines of peer communication
supercharged their ability to master the complex material.

6 CONCLUSION
Extreme Ungrading as I have outlined it is not meant to be a rejec-
tion of traditional computer science rigor, rather it is posed as a
necessary evolution of the way that we guide learners towards a
mastery of our continually complexifying discipline. Automated
point-based grading in academia is no more inevitable than the
automation and quantification of gig economy apps that proliferate
under platform capitalism. Yet unlike managers at massive tech
congolmerates, members of the academy have the power to orient
developing minds towards new horizons of our field, to inspire
students entering the workforce to reimagine the role of technol-
ogy in our society. By eliminating exams, rarefying rubrics, and
prioritizing collaborative work products, it is possible to rewild
computer science classrooms to become more inclusive spaces for
exploration.

Scholars of human-computer interaction have the potential to
reshape the future of the technology industry through the pedagog-
ical precedents we set in the classroom today; my sincere hope is
that more of us will begin to realize that. As to be expected with an
agile approach, I plan to further refine my methodology in the ensu-
ing semesters. By introducing formal verbal critiques for prototypes
and MVPs, I will aim to improve student comprehension of their
projects’ merits, ultimately seeking to reduce the variance between
their assessments and mine. I also intend to extend my Extreme Un-
grading practices to upcoming courses in need of preparation, and
I encourage readers to consider doing the same. While upending an
existing system can be challenging, preparing new courses can be
a perfect time to experiment with avant-garde styles of assessment.
My hope is that this case study, and the practical recommendations
I have derived from it, will provide enough supportive scaffolding
for those tempted to take the same quantum leap; I look forward
to reading the future reports of those blazing ever more rugged
ungrading trails.

ACKNOWLEDGMENTS
Many thanks are due to my brave, brilliant students for their willing-
ness to explore the wilds of experimental course design, especially
those in team Ghost who set the earliest records of achievement on
untrodden ground, energizing me to continue.

REFERENCES
[1] Tuukka Ahoniemi, Essi Lahtinen, and Tommi Reinikainen. 2008. Improving

Pedagogical Feedback and Objective Grading. In Proceedings of the 39th ACM
Technical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE
’08). ACM. https://doi.org/10.1145/1352135.1352162

[2] Karina V. Assiter. 2023. Integrating Grading for Equity Practices into Project-
Based Computer Science Curriculum. ACM Inroads 14, 1 (2023), 22–29. https:
//doi.org/10.1145/3582559

[3] Kent Beck. 1999. Extreme Programming Explained: Embrace Change. Addison-
Wesley.

[4] Kent Beck, James Grenning, Robert C. Martin, Mike Beedle, Jim Highsmith, Steve
Mellor, Arie van Bennekum, Andrew Hunt, Ken Schwaber, Alistair Cockburn,
Ron Jeffries, Jeff Sutherland, Ward Cunningham, Jon Kern, Dave Thomas, Martin
Fowler, and Brian Marick. 2001. Manifesto for Agile Software Development.
Agile Alliance. https://agilemanifesto.org.

[5] Mahnaz Behroozi, Chris Parnin, and Titus Barik. 2019. Hiring is Broken: What
Do Developers Say About Technical Interviews?. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing (Memphis, TN,
USA) (VL/HCC ’19). IEEE. https://doi.org/10.1109/VLHCC.2019.8818836

[6] Andrew Berns. 2020. Scored out of 10: Experiences with Binary Grading Across
the Curriculum. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (Portland, OR, USA) (SIGCSE ’20). ACM. https://doi.org/10.
1145/3328778.3366956

[7] Benjamin S. Bloom. 1968. Learning for Mastery. Evaluation Comment 1, 2 (1968).
[8] Susan D. Blum. 2017. Ungrading. Inside Higher Ed. November

14, 2017. https://insidehighered.com/advice/2017/11/14/significant-learning-
benefits-getting-rid-grades-essay.

[9] Kevin W. Bowyer and Lawrence O. Hall. 1999. Experience using "MOSS" to
detect cheating on programming assignments. In Proceedings of the 29th Annual
Frontiers in Education Conference (San Juan, Puerto Rico) (FCE ’99). IEEE. https:
//doi.org/10.1109/FIE.1999.840376

[10] Johanna Brewer. 2023. Seeing Like the Streamers: Reprogramming the Panopticon.
In Real Life in Real Time: Live Streaming Culture, Johanna Brewer, Bo Ruberg,
Amanda L. L. Cullen, and Christopher J. Persaud (Eds.). MIT Press.

[11] Phoebe K. Chua and Melissa Mazmanian. 2020. Are You One of Us? Current
Hiring Practices Suggest the Potential for Class Biases in Large Tech Companies.
Proceedings on Human-Computer Interaction 4, CSCW (2020). https://doi.org/10.
1145/3415214

[12] David Clark. 2022. Assessing My First Semester of ‘Ungrading’. EdSurge. January
17, 2022. https://edsurge.com/news/2022-01-17-assessing-my-first-semester-of-
ungrading.

[13] Nathalia da Cruz Alves, Christiane Gresse von Wangenheim, Jean Carlo Rossa
Hauck, and Adriano Ferreti Borgatto. 2020. A Large-Scale Evaluation of a Rubric
for the Automatic Assessment of Algorithms and Programming Concepts. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). ACM. https://doi.org/10.1145/3328778.3366840

[14] Emma Enström, Gunnar Kreitz, Fredrik Niemelä, Pehr Söderman, and Viggo
Kann. 2011. Five Years With Kattis — Using an Automated Assessment System
in Teaching. In Proceedings of the 41st Frontiers in Education Conference (Rapid
City, SD, USA) (FCE ’11). IEEE. https://doi.org/10.1109/FIE.2011.6142931

[15] Joe Feldman. 2018. Grading for Equity: What It Is, Why It Matters, and How It Can
Transform Schools and Classrooms. Corwin.

[16] National Center for Science and Engineering Statistics (NCES). 2023. Diversity
and STEM: Women, Minorities, and Persons with Disabilities. Special Report
NSF 23-315. https://ncses.nsf.gov/pubs/nsf23315/report.

[17] James Garner, Paul Denny, and Andrew Luxton-Reilly. 2019. Mastery Learning
in Computer Science Education. In Proceedings of the 21st Australasian Comput-
ing Education Conference (Sydney, NSW, Australia) (ACE ’19). Association for
Computing Machinery. https://doi.org/10.1145/3286960.3286965

[18] Elisabeth Gruner. 2022. I no longer grade my students’ work – and I wish I
had stopped sooner. Big Think. April 9, 2022. https://bigthink.com/thinking/
ungrading.

[19] Beth Haas. 2021. Reflections on Ungrading in Small Chemistry Classes. Personal
Blog. January 3, 2021. http://bethhaas.me/blog/2021/1/reflections-ungrading-
small-chemistry-classes.

[20] Rich Halstead-Nussloch and William Carpenter. 2002. Teaching and Learning
Ubiquitous CHI (UCHI) Design: Suggestions from the BauhausModel. In Extended
Abstracts of Conference on Human Factors in Computing Systems (Minneapolis,
Minnesota, USA) (CHI EA ’02). Association for Computing Machinery. https:
//doi.org/10.1145/506443.506533

[21] Monica Heilman. 2020. Ungrading Explained: What I’m Telling my Students
This Fall. Personal Blog. August 25, 2020. http://monicaheilman.com/ungrading-
explained.

[22] Claire L. Jarvis. 2020. Chemistry educators try ‘ungrading’ techniques to help stu-
dents learn. C&EN. April 26, 2020. https://cen.acs.org/education/undergraduate-
education/Chemistry-educators-try-ungradingtechniques-help/98/i16.

https://doi.org/10.1145/1352135.1352162
https://doi.org/10.1145/3582559
https://doi.org/10.1145/3582559
https://agilemanifesto.org
https://doi.org/10.1109/VLHCC.2019.8818836
https://doi.org/10.1145/3328778.3366956
https://doi.org/10.1145/3328778.3366956
https://insidehighered.com/advice/2017/11/14/significant-learning-benefits-getting-rid-grades-essay
https://insidehighered.com/advice/2017/11/14/significant-learning-benefits-getting-rid-grades-essay
https://doi.org/10.1109/FIE.1999.840376
https://doi.org/10.1109/FIE.1999.840376
https://doi.org/10.1145/3415214
https://doi.org/10.1145/3415214
https://edsurge.com/news/2022-01-17-assessing-my-first-semester-of-ungrading
https://edsurge.com/news/2022-01-17-assessing-my-first-semester-of-ungrading
https://doi.org/10.1145/3328778.3366840
https://doi.org/10.1109/FIE.2011.6142931
https://ncses.nsf.gov/pubs/nsf23315/report
https://doi.org/10.1145/3286960.3286965
https://bigthink.com/thinking/ungrading
https://bigthink.com/thinking/ungrading
http://bethhaas.me/blog/2021/1/reflections-ungrading-small-chemistry-classes
http://bethhaas.me/blog/2021/1/reflections-ungrading-small-chemistry-classes
https://doi.org/10.1145/506443.506533
https://doi.org/10.1145/506443.506533
http://monicaheilman.com/ungrading-explained
http://monicaheilman.com/ungrading-explained
https://cen.acs.org/education/undergraduate-education/Chemistry-educators-try-ungradingtechniques-help/98/i16
https://cen.acs.org/education/undergraduate-education/Chemistry-educators-try-ungradingtechniques-help/98/i16

Extreme Ungrading: Rewilding the Classroom through Human-Centered Design CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

[23] Douglas King. 2022. A Defense of the “Ungrading” Movement. The James G.
Martin Center for Academic Renewal. July 13, 2022. https://www.jamesgmartin.
center/2022/07/a-defense-of-the-ungrading-movement.

[24] Aarti Madan, Geoff Pfeifer, Gillian Smith, Ryan Madan, Sarah Stanlick, and
Zoe Reidinger. 2022. Food for Thought is Back! Save the Date for Ungrading
the WPI Experience: Lessons from Across the Disciplines. Online. March
21, 2022. https://wpi.edu/news/announcements/food-thought-back-save-date-
ungrading-wpi-experience-lessons-across-disciplines.

[25] David J. Malan. 2021. Toward an Ungraded CS50. In Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education (SIGCSE ’21). ACM.
https://doi.org/10.1145/3408877.3432461

[26] Mariam F. Mashregi. 2021. Is Ungrading an Appropriate Assess-
ment Tool in Science-Based Courses? Open Library. June 2021.
https://ecampusontario.pressbooks.pub/tlhe720assessment/chapter/is-
ungrading-an-appropriate-assessment-tool-in-science-based-courses.

[27] James W. McGuffee, David L. Largent, and Christian Roberson. 2019. Transform
Your Computer Science Course with Specifications Grading. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery. https://doi.org/
10.1145/3287324.3287528

[28] Linda B. Nilson. 2014. Specifications Grading Restoring Rigor, Motivating Students,
and Saving Faculty Time. Routledge.

[29] Alannah Oleson, Christopher Mendez, Zoe Steine-Hanson, Claudia Hilderbrand,
Christopher Perdriau, Margaret Burnett, and Amy J. Ko. 2018. Pedagogical
Content Knowledge for Teaching Inclusive Design. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (Espoo, Finland) (ICER
’18). Association for Computing Machinery. https://doi.org/10.1145/3230977.
3230998

[30] Alexandrea Ravenelle. 2019. Hustle and Gig: Struggling and Surviving in the
Sharing Economy. University of California Press.

[31] Stuart Reges. 2003. Using Undergraduates as Teaching Assistants at a State
University. In Proceedings of the 34th ACM Technical Symposium on Computer
Science Education (Reno, Nevada, USA) (SIGCSE ’03). Association for Computing

Machinery. https://doi.org/10.1145/611892.611943
[32] Juliana Feliciano Reyes. 2019. Will Google’s Struggle With its ‘Underclass’ Lead

to White-collar Workers Becoming the Next Labor Activists? The Philadelphia
Inquirer. May 29, 2019. https://inquirer.com/news/google-temp-workers-labor-
organizing-activism-20190529.html.

[33] Clarissa Sorensen-Unruh. 2020. Ungrading: What is it and why should we use
it? ChemEd X. January 14, 2020. https://chemedx.org/blog/ungrading-what-it-
and-why-should-we-use-it.

[34] Scott Spurlock. 2023. Improving Student Motivation by Ungrading. In Proceedings
of the 54th ACM Technical Symposium on Computer Science Education (Toronto,
ON, Canada) (SIGCSE ’23). ACM. https://doi.org/10.1145/3545945.3569747

[35] Jesse Strommel. 2018. How to Ungrade. Personal Blog. March 11, 2018. https:
//www.jessestommel.com/how-to-ungrade.

[36] Robert Talbert. 2022. Ungrading after 11 weeks. Personal Blog. March 20, 2022.
https://rtalbert.org/ungrading-after-11-weeks.

[37] Donald Tomaskovic-Devey and JooHee Han. 2018. Is Silicon Valley Tech Diversity
Possible Now? Center for Employment Equity at UMass Amherst. July 1,
2018. https://www.umass.edu/employmentequity/silicon-valley-tech-diversity-
possible-now-0.

[38] Ella Tuson and Timothy Hickey. 2023. Mastery Learning with Specs Grading for
Programming Courses. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education (Toronto, ON, Canada) (SIGCSE 2023). Association
for Computing Machinery. https://doi.org/10.1145/3545945.3569853

[39] Mark Urban-Lurain and Donald J. Weinshank. 1999. “I Do and I Understand”:
Mastery Model Learning for a Large Non-Major Course. In Proceedings of the
30th SIGCSE Technical Symposium on Computer Science Education (New Orleans,
Louisiana, USA) (SIGCSE ’99). Association for Computing Machinery. https:
//doi.org/10.1145/299649.299738

[40] Mihaela Vorvoreanu, Colin M. Gray, Paul Parsons, and Nancy Rasche. 2017.
Advancing UX Education: AModel for Integrated Studio Pedagogy. In Proceedings
of Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for ComputingMachinery. https://doi.org/10.1145/3025453.
3025726

https://www.jamesgmartin.center/2022/07/a-defense-of-the-ungrading-movement
https://www.jamesgmartin.center/2022/07/a-defense-of-the-ungrading-movement
https://wpi.edu/news/announcements/food-thought-back-save-date-ungrading-wpi-experience-lessons-across-disciplines
https://wpi.edu/news/announcements/food-thought-back-save-date-ungrading-wpi-experience-lessons-across-disciplines
https://doi.org/10.1145/3408877.3432461
https://ecampusontario.pressbooks.pub/tlhe720assessment/chapter/is-ungrading-an-appropriate-assessment-tool-in-science-based-courses
https://ecampusontario.pressbooks.pub/tlhe720assessment/chapter/is-ungrading-an-appropriate-assessment-tool-in-science-based-courses
https://doi.org/10.1145/3287324.3287528
https://doi.org/10.1145/3287324.3287528
https://doi.org/10.1145/3230977.3230998
https://doi.org/10.1145/3230977.3230998
https://doi.org/10.1145/611892.611943
https://inquirer.com/news/google-temp-workers-labor-organizing-activism-20190529.html
https://inquirer.com/news/google-temp-workers-labor-organizing-activism-20190529.html
https://chemedx.org/blog/ungrading-what-it-and-why-should-we-use-it
https://chemedx.org/blog/ungrading-what-it-and-why-should-we-use-it
https://doi.org/10.1145/3545945.3569747
https://www.jessestommel.com/how-to-ungrade
https://www.jessestommel.com/how-to-ungrade
https://rtalbert.org/ungrading-after-11-weeks
https://www.umass.edu/employmentequity/silicon-valley-tech-diversity-possible-now-0
https://www.umass.edu/employmentequity/silicon-valley-tech-diversity-possible-now-0
https://doi.org/10.1145/3545945.3569853
https://doi.org/10.1145/299649.299738
https://doi.org/10.1145/299649.299738
https://doi.org/10.1145/3025453.3025726
https://doi.org/10.1145/3025453.3025726

	Extreme Ungrading: Rewilding the Classroom through Human-Centered Design
	Recommended Citation

	Abstract
	1 Introduction
	1.1 The Art of Assessment in Computer Science
	1.2 Graduating into the Automation Generation

	2 Ungrading 101: A Brief Survey
	2.1 Deprogramming in Progress
	2.2 Addressing Alternative Assessments at CHI

	3 Experimenting with Extremes
	4 Software Engineering: A Case Study
	4.1 First Run “Into the Wilds” (Fall 2021)
	4.2 Second Iteration (Spring 2022)
	4.3 Third Trial (Fall 2022)
	4.4 Fourth Refinement (Spring 2023)

	5 Extreme Ungrading Elementals
	6 Conclusion
	Acknowledgments
	References

