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Abstract
While recent research has shown that “classical” automated planning systems are effective tools
for story generation, the success of automated story understanding systems may require integration
between commonsense reasoning and more sophisticated forms of planning to make inferences and
deductions about the plans and goals of story actors. Methods that decompose abstractions (i.e.,
tasks or language expressions) into primitives have played an important role for both automated
planning systems and automated story understanding systems, but the two areas have remained
largely isolated from each other with few overlaps. We argue that this little-explored connection
can benefit both areas of research, and this position paper explores the connections between these
systems through the common use of primitive decomposition and its variants. Specifically, we
present a prototype of a Hierarchical Task Network planner that decomposes natural language input
into primitive structures of Conceptual Dependency, a meaning representation designed for in-depth
story understanding. We discuss the important challenges, implications, and applications enabled
by the establishment of this unique, direct link between planning and story understanding systems.

1. Introduction

Because accounting for the plans and goals of rational agents is so important to building intelligent
systems generally, it is unsurprising that aspects of planning are also important for systems that
interact with users or data in the form of natural language. Recently story generation systems have
successfully been integrated with automated planning systems to produce narratives or dialogues
that are believable to human audiences because the characters in the narratives perform acts that
align with commonsense goals and plans of readers (Riedl & Young, 2010; Haslum, 2012; Porteous
et al., 2013). However, such approaches focus on sequential planning, often ignoring hierarchy, and
they fail to provide a general mechanism for incorporating commonsense knowledge.

These recent successes in story generation can be applied to the problems of narrative under-
standing, story understanding, and ultimately language understanding. Broadly, the understand-
ing problem can be seen as a kind of “inverse” to story generation. However, understanding is a
particularly challenging task: computing systems designed to understand stories need to track the
goals and plans of actors because the actions they perform are part of larger plans in the service of
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higher-level goals (Wilensky, 1983). Moreover, while story generation systems can often rely on
predetermined, human-generated text templates, success in language understanding and story un-
derstanding systems may require deeper integration between knowledge about goals and plans and
other commonsense knowledge for decisions about parsing, resolving word sense ambiguities, and
making inferences to be responsive to a broad range of inputs.

Primitive decomposition systems (Schank, 1972) take a particular approach to achieving natural
language understanding by representing language semantics in terms of primitives. A unique variety
of these systems transforms words, phrases, and sentences into complex structures combining non-
linguistic primitives that stand for the understander’s basic concepts for events, acts, and changes
of state in the world. At the same time, hierarchical planning systems (Nau et al., 1999) express
planning problems in terms of “high-level” tasks and goals, and solve them by breaking them down
into intermediate subgoals and subtasks. They ultimately construct a solution as a complex sequence
of primitive operators representing events, changes of state in the world, and the acts to be performed
by an intelligent agent.

There has been little work examining the similarities and connections between primitive de-
composition processes for natural language understanding and the decomposition processes for
hierarchical planning. Exploiting these links may enhance in-depth natural language understand-
ing systems by providing better primitive systems and decomposition strategies, and they may en-
hance planning systems by providing connections to natural language understanding and natural
language generation systems, allowing intelligent agents to better interpret instructions and explain
their actions. Additionally, these links may allow the commonsense knowledge structures present
in automated planning systems be used directly for automated story understanding or vice versa.

This paper is organized as follows: Section 2 provides background on hierarchical planning sys-
tems that perform decompositions of tasks into primitive operators and story understanding systems
that perform decompositions of the meanings of natural language expressions into conceptual prim-
itives; Section 3 argues for the equivalence between these particular kinds of planning and language
understanding systems and examines how their commonalities enable their integration; in Sections 4
and 5 we present an implementation and demonstration of a hierarchical task network planning sys-
tem that directly decomposes a simple natural language story into a conceptualization in Schank’s
Conceptual Dependency system, a primitive decomposition-based meaning representation designed
for automated in-depth story understanding; and in Section 6 we close with a discussion of how this
prototype can be extended to include recent work in hierarchical planning and how it relates to a
recent emphasis in explainable artificial intelligence.

2. Background

While our focus is on connecting automated planning to story understanding, story generation has
attracted recent interest in the automated planning community, emphasizing sequential (e.g., “clas-
sical”) planning systems. We provide a brief introduction to that literature and discuss work in
hierarchical planning systems that perform decompositions from high-level methods to primitives.
We then overview planning problems in language understanding systems and the role that decom-
position into primitives plays in language understanding and story understanding.

182
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2.1 Automated Planning in Story Generation and Dialogue Generation

Automated planning techniques have been successfully applied to dialogue systems and story gen-
eration. For example, work in dialog systems by Petrick and Foster (Petrick & Foster, 2013) demon-
strated that a robotic bartender could use a variant of hierarchical planning to produce believable
and interleaved dialog with multiple customers ordering beverages. Recent work has shown that
knowledge of human goals and plans is important for automated story generation systems, because
it makes the character actions in the texts more understandable and believable to human audiences
(Riedl & Young, 2010; Haslum, 2012; Porteous & Cavazza, 2009; Porteous et al., 2013).

Automated planning systems and algorithms typically determine what actions will help intel-
ligent agents, robots, or other autonomous systems meet their goals in the real world (i.e., in the
story). Typical automated planning systems represent the world as an implicit state transition sys-
tem where an intelligent agent navigates the states by applying actions that transform the world from
one state to another. For example, a character in the game Minecraft desiring to move gold from the
mine to a storage chest might perform the following actions: walk_to(mine), mine(gold),
walk_to(chest), and place(gold, chest). The planning system takes as input an initial
state (e.g., at(home)), a goal state (e.g., in(chest, gold)), and a set of action templates
(i.e., operators describing the transitions), and produces a sequence of actions that transform the
system from the initial state to the goal state.

Much of automated planning system research centers around designing the state abstractions,
operators, and planning algorithms that construct plans while minimizing some metric (e.g., plan
length, plan cost). A central focus is developing domain-independent formulations of the algorithms
so that a single planning system can solve a variety of planning problems. This domain-independent
approach has spawned a family of heuristics that are extremely effective at guiding the search pro-
cess of the planner toward satisficing or optimal solutions. More recent advancements have extended
planning to include sophisticated techniques for numeric, temporal, and continuous effects.

2.2 Decomposition in Hierarchical Planning

In contrast to constructing a sequential plan from the initial state to the goal state, hierarchical plan-
ning systems decompose abstract tasks or goals into successively more concrete action primitives.
These kinds of planners are often used in industry or space applications, where planning speed is
paramount and domain-dependent knowledge can greatly reduce the planning effort.

Hierarchical Task Network (HTN) planning systems such as the Simple Hierarchical Ordered
Planner (SHOP) planning system (Erol et al., 1994; Nau et al., 1999, 2003) decompose abstract (i.e.,
compound) tasks into primitive tasks (e.g., actions). The planning process continues recursively by
decomposing tasks via methods until only primitive actions remain; the resulting primitives are the
plan. A challenge with HTN planning is figuring out how to provide guidance for the decomposition
process. For example, when multiple decompositions exist for an abstract task, it is not always
clear how the planner should choose between them. External guidance could be provided, but this
increases the burden on the domain developer. Another challenge is how to deal with cases where
the decomposition cannot produce a primitive or a method is missing.
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A recent variant of hierarchical planning, called Hierarchical Goal Networks (HGNs, Shiv-
ashankar et al., 2012, 2013) unifies “classical” planning and hierarchical planning into a single
framework. Instead of decomposing tasks, HGN planning decomposes goals. Problem statements
contain both operators and methods, and, in the absence of a hierarchy, the planner can resort to
domain-independent planning to search for a sequential plan. For both methods and operators, the
planner can leverage work in heuristics from domain-independent planning to provide search guid-
ance and reduce search effort. A stronger formal connection between HTNs and HGNs recently
showed their equivalence under different semantics (Alford et al., 2016). HGNs thus blend the best
of hierarchical and sequential planning approaches.

2.3 Planning in Story Understanding

Automated story understanding is a particularly challenging sub-domain of natural language under-
standing (Allen, 1995; Winograd, 1972). Computing systems designed to understand stories need
to track the goals and plans of actors in stories because the actions they perform are part of larger
plans in the service of higher-level goals (Wilensky, 1983). Story understanding tasks further raise
the expectations of systems to be as knowledgeable as a human understander by resolving syntac-
tic and semantic ambiguities in language, simulating human-like thought processes, and applying
commonsense knowledge to perform inferences and fill in gaps in typical storytelling (Dyer, 1982;
Winston, 2011, 2014; Diakidoy et al., 2015).

Story understanding systems perform the task of interpreting the actions of characters as de-
scribed in the story by reasoning about how those actions fit into those characters’ plans. A typical
story understanding problem is to have a system “read” or process a story and also process and
answer questions about the story (Lehnert, 1978). For example, the story could be: “Bob was
thirsty. He grabbed a glass from the cupboard.” And the question for the system to answer could
be, “what did Bob intend to do with the glass?” The likely answer, that “Bob intended to pour a
liquid into the glass and then consume the liquid,” depends on the understander interpreting “Bob
was thirsty” as the establishment of Bob’s goal to consume liquid, which could be seen as a typical
“semantics” task. However, answering the question also depends on the understander’s ability to
construct a sequence of actions to reaching that goal that involves the glass. Although the purpose
of constructing this action sequence was to interpret the meaning of a story rather than to operate
a real-world goal-directed intelligent agent, constructing that sequence of actions is identical to a
planning process.

2.4 Decomposition in Story Understanding

Primitive decomposition systems are frequently used in both natural language processing research
and broader areas of linguistics, because they reduce ambiguity in language by representing canon-
ical forms of meaning. These properties of decompositions simplify implementations of natural
language processing systems while enabling linguists to draw conclusions about universal proper-
ties of language (Schank, 1972; Jackendoff, 1983; Wilks & Fass, 1992; Wierzbicka, 1996).

While the majority of these primitive systems for natural language insist that the primitives must
actually be words in a language, others are unique in addressing the challenges of in-depth story
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understanding because they devise representations that decompose meaning into complex combi-
nations of language-free conceptual primitives. Both Schank’s Conceptual Dependency (Schank,
1972; Schank et al., 1975; Lytinen, 1992) and Minsky’s (1988) Trans-frames seek out primitives
and structures that are conceptual by virtue of being as far as possible from the language, its lexi-
cal entries, grammar, and syntax; these systems favor non-linguistic primitives representing events,
acts, and changes in state in the physical and mental world of an intelligent human understander.

For story understanding, the decomposition of language into structures of language-free con-
ceptual primitives has a number of important benefits. Firstly, representing concepts as complex
combinations of primitives enables sophisticated relations between concepts and other concepts,
and between concepts and language expressions (Macbeth, 2017). For example, the verb “kick”
can be decomposed into two primitive acts, a MOVE primitive act representing the person mov-
ing their foot, and a PROPEL act representing the person striking an object. If the verb “punch”
is similarly decomposed into a MOVE primitive act representing a person moving their fist and a
PROPEL act representing a person striking an object, a natural relation between “kick” and “punch”
is engendered inherently by matching the primitives within the decomposed structures. This natural
relation between the concepts of “kick” and “punch” encompasses both the similarities—both mean
moving a body part to strike an object—and differences—in one the foot is moved, in the other
the fist is moved. This substrate also helps to overcome many of the ambiguities of surface lan-
guage forms, and provides deep relations from the input text to frames, scripts, and other kinds of
knowledge structures, giving language understanding systems better reasoning capabilities (Schank
& Abelson, 1977). Conceptual primitive decomposition could provide a significant enhancement
and complement to semantic parsing (Berant et al., 2013; Shi & Mihalcea, 2005), abstract mean-
ing representations (Banarescu et al., 2013), and knowledgebases such as FrameNet (Baker et al.,
1998) and ConceptNet (Speer & Havasi, 2013) when they are used in story understanding systems
(Cambria et al., 2016, 2018).

However, one must also acknowledge the known challenges with primitive decomposition ap-
proaches generally, such as arranging for the completeness of the set of primitives, and the apparent
difficulty in representing more abstract language forms. If a non-linguistic primitive representation
system is chosen, another major challenge is the engineering of systems that actually perform the
transformation or translation from natural language into the non-linguistic primitive decomposition
representation. The primitive decomposition systems for Schank’s Conceptual Dependency (CD)
were often termed conceptual analyzers to distinguish them from parsers which only provide syntac-
tic relations or parts of speech categories for words in texts (Riesbeck, 1975; Birnbaum & Selfridge,
1975; Dyer, 1982). Recent research in this area has connected CD primitives to image schemas and
large-scale commonsense knowledge bases (Macbeth et al., 2017; Cambria et al., 2016), performed
human-subject studies on the reality of conceptual primitives (Macbeth & Barionnette, 2016), and
explored crowdsourcing corpora to build conceptual analyzers through machine learning (Macbeth
& Grandic, 2017).
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3. Primitive Decomposition in Language Understanding and Planning

Although knowledge about typical goals and plans of human actors is needed for in-depth under-
standing of natural language, there are many apparent differences between language understanding
systems and automated planning systems. While language understanding systems work to interpret
the goal-directed acts of intelligent agents or people in a text, automated planning systems determine
which acts will help an agent achieve their goals.

At the same time, an intelligent agent, robot, or other autonomous system may be performing
automated planning in an environment where other intelligent agents, robots, or other autonomous
systems are present. These other agents—whether they are cooperative and intending to perform
acts that help our agent reach its goals, or adversarial and intending to thwart our agent’s goals—
will be constructing plans and performing acts that will change the state of the world. To plan in
this kind of environment requires the planner to be able to interpret the acts that another agent is
taking and determine the ultimate goals of these acts.

Whether communication between the intelligent agents (in natural language or some sort of
formal language) is possible or not, each agent will have to, in essence, understand the other agents
by interpreting the state-changing operations and acts that they have performed in the past and by
predicting what acts they will perform in the future. In a sense, the only difference between this
planning process and the story understanding process described above is in the way that the planner
receives its input information about the initial and goal states of the world.

In making our specific position connecting automated planning and natural language under-
standing, we recognize that certain deep connections between understanding and planning are well
known (e.g., Wilensky, 1983; Norvig, 1983). There has even been significant work on combining
the CD-transframe primitive decomposition system with representations of the goals and plans of
story actors (Schank & Abelson, 1977) and using these combined representations together to build
working in-depth story understanding systems (Dyer, 1982). Some recent work has focused on
having robots narrate their planning experiences in natural language (Rosenthal et al., 2016), using
planning systems to generate realistic narratives (Riedl & Young, 2010; Haslum, 2012), and unify-
ing plan recognition and plan generation using lexicalized grammars (Geib, 2015). In contrast, our
specific position seeks out deep connections between planning and language understanding on the
basis of processes that perform decomposition into structures or networks of language-free concep-
tual primitives.

3.1 Primitives in Understanding and Planning: A Unified View

When one juxtaposes primitive decomposition systems for natural language understanding with
hierarchical planning systems, a number of congruent structures become apparent. While both hier-
archical task network and hierarchical goal network planning systems start with planning problems
specified at a high level and formulate solutions in terms of low-level primitive tasks or primi-
tive goals, primitive decomposition systems for natural language understanding transform natural
language into complex structures of low-level conceptual primitives. In planning, the inputs are
high-level problem statements of tasks or goals which are intuitively understandable by humans and
are similar to expressions processed by natural language understanding systems (e.g. “Go to park,
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good weather, no cash”). The plans that are produced are sequences of low-level task and goal
operators which represent primitive acts and the consequences that those acts have on the world.
These appear to be the same kinds of primitive act sequences and structures produced by a primitive
decomposition of natural language.

For example, for the problem statement “Go to park, good weather, no cash”, Nau et al.’s (1999)
SHOP planner finds the plan (!walk downtown park) where the walk operator changes the
state of the world by deleting the atom (at ?here) and adding the atom (at ?there) to the
state. A primitive decomposition of “Bob walked to the park” in CD transframes (for examples, see
Macbeth & Grandic, 2017) would likely produce a PTRANS act indicating that Bob traveled from
his current location to the park, and a MOVE act indicating that Bob moved his legs to accomplish
the PTRANS.

The method structures in hierarchical planning problems, (e.g. the travel-to method in
Nau et al. (1999) having a task list such as (!walk ?p ?q) or (!wait-for ?bus ?x)
(pay-driver 1.00) (!ride ?bus ?x ?y)) specify the decomposition process for plan-
ning, while in conceptual analysis systems for natural language, the decomposition process is de-
fined by entries in a conceptual lexicon, which translates between words and phrases in natural
language and CD structures, which in this case would contain PTRANS and MOVE acts. The plan-
ning system breaks down a problem into intermediate subgoals and subtasks and conducts a search
for a network of methods and operators that accomplish the task, while a conceptual analyzer builds
a representation of the natural language input by storing the CD structures generated by words
in a working memory, and searching for ways to connect them together into larger CD structures
(Riesbeck, 1975; Birnbaum & Selfridge, 1975).

Based on these observations, we argue for a view that goes beyond simply combining natural
language generators with automated planners, or conjoining elements of actors’ goals and plans
with primitive decompositions of language. Instead we argue for a unified view in which primitive
decomposition-based understanding and hierarchical planning are largely identical processes. This
realization encourages work to use the structures and systems for hierarchical planning directly in
decomposition of language for story understanding, for example, using the method specifications of
the SHOP planner (Nau et al., 1999) in a conceptual analyzer such as ELI (Riesbeck, 1978) or Dypar
(Dyer, 1982). It also encourages using structures for decomposition of natural language directly in
hierarchical planning systems; a conceptual analyzer may have a conceptual lexicon entry for the
word “walk” which could be used in the travel-to method for the SHOP planner. Obviously the
CD conceptual primitives are not identical to the SHOP planner primitives, but this view encourages
work on selecting domain-independent and reusable primitives, operators, and connectors for both
kinds of systems. We illustrate this unified vision with an example in the following section.

4. Natural Language Primitive Decomposition: An Example

Figure 1 shows an example of a primitive decomposition for a simple sentence in Conceptual De-
pendency (Schank, 1972; Schank et al., 1975; Lytinen, 1992). In the figure, the sentence “Lisa
kicked the ball to the fence” is decomposed into three connected primitive acts:
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Lisa PTRANS ball

fence

+3ks ooo

D

OO
��
I

Lisa PROPEL ball+3ks ooo��
I

Lisa MOVE foot

ball

+3ks ooo
D
��

Figure 1. A CD decomposition of the sentence “Lisa kicked the ball to the fence.” CD (Schank, 1972) decom-
poses the kicking act into a combination the primitive acts PTRANS, MOVE, and PROPEL. Double arrows
indicate the actor performing the primitive act. Single arrows marked “o”, “D”, and “I” indicate the object,
the directional case, and the instrument case, respectively.

• The PTRANS act represents only that Lisa in some way changed the location of the ball from
one location to another; in this case from Lisa’s location to being at the fence (indicated by
the direction case link labeled “D”). For this act, Lisa is the actor and the ball is the object.
How exactly Lisa performs the PTRANS is not specified by this primitive conceptualization
alone.

• The PROPEL act represents only that Lisa in some way struck or applied a force to the ball.
For this act, Lisa is the actor and the ball is the object. How exactly Lisa performs the
PROPEL is not specified by this primitive conceptualization alone.

• The MOVE act represents only that Lisa moves a part of her body in a particular direction.
With “Lisa’s foot” in the “object” case, and “ball” in the direction case, it represents the
primitive act of Lisa moving her foot in the direction of the ball.

The three acts are connected through the following links:

• The PTRANS act and the PROPEL act are connected via an “instrumental” link (indicated
by the arrow labeled “I”), which indicates that the PROPEL act was performed as part of
achieving the PTRANS and making it happen.

• The PROPEL act and the MOVE act are also connected via an “instrumental” link, indicating
that the MOVE act was performed as part of achieving the PROPEL.

For story understanding, the decomposition of this sentence makes it simple to perform com-
monsense inferences based on a relatively small set of primitive acts instead of a potentially large
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Conceptual Dependency Primitives Pyhop Implementation

PTRANS: (Physical TRANSfer) To
change the location of b

Pre: location(b) := x
Eff: location(b) := y

PROPEL: To apply a force to b
Pre: location(a) == location(b)
Eff: none.

MOVE: To move a body part
Pre: location(b) := x
Eff: location(b) := y

def ptrans(state,a,b,x,y):
if state.loc[b] == x:

state.loc[b] = y
return state

else: return False

def propel(state,a,b):
if state.loc[a] == state.loc[b]:

return state
else: return False

def move(state,a,b,x,y):
if state.loc[b] == x:

state.loc[b] = y
return state

else: return False

Figure 2. Left: Descriptions, preconditions, and effects of three Conceptual Dependency primitives used to
decompose the sentence “Lisa kicked the ball to the fence.” Right: operators corresponding to the primitives
implemented as functions in the Pyhop HTN planner.

collection of lexical items (for example, the PROPEL primitive act promotes an inference that the
ball changed location). The decomposition also simplifies the understanding of paraphrases of iden-
tical stories. For example, the same conceptualization could be expressed as “Lisa struck the ball by
moving her foot towards the ball”. As long as conceptual analysis subsystems exist to decompose
two paraphrases to a representation consisting of combinations of non-linguistic conceptual primi-
tives, the paraphrases can be matched based on these structures, allowing the system to overcome
many of the ambiguities of surface language forms.

5. SHOP as a CD Conceptual Analyzer

Pyhop1 is a simple HTN planner with a planning algorithm that is nearly identical to that in SHOP
(Nau et al., 2003). Pyhop is written in less than 150 lines of Python code, and it represents the
planning state as a Python object containing variable bindings, and the HTN operators and methods
as ordinary Python functions which refer to states explicitly. It is open-source software and available
under the Apache License. We use the Pyhop framework to build a proof-of-concept HTN planner

1. http://bitbucket.org/dananau/pyhop
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that performs primitive decomposition of natural language expressions into Conceptual Dependency
conceptualization structures as described in Section 4. To accomplish the CD decomposition, we
write three operators for move, propel, and ptrans (cf. Section 5.1), and we write a single
method kick that decomposes lexical items into these operators (cf. Section 5.2).

5.1 CD Primitives as Planning Operators

The example in Figure 2 illustrates how the CD primitives can be implemented as operators within
a planning system with appropriate preconditions and effects. For example, PTRANS in CD rep-
resents the act of changing the location of some object. The object can be the actor, meaning that
the actor moved themselves to a different location, or the object can be someone or something other
than the actor. PTRANS is nonspecific as to the exact way that the location change is effected.
We implement PTRANS as the operator ptrans(state,a,b,x,y) with the arguments a and
b representing the actor and object, and the arguments x and y representing the initial and final
location of the object. The precondition for PTRANS is that the location of the object is x, and the
effect is that the location of the object is y.

PROPEL represents the act of applying force to an object as well as the act of striking or col-
liding with an object. A PROPEL does not necessarily mean that the object moves or accelerates,
but it does as the instrument of a PTRANS in this case. We implement PROPEL as the operator
propel(state,a,b) with the arguments a and b representing the actor and object. The pre-
condition for PROPEL is that the locations of the actor and the object are the same, and it has no
effects on its own.

MOVE represents the actor moving a part of their body in the direction of another object,
but not necessarily changing location of their entire body. We implement MOVE as the opera-
tor move(state,a,b,x,y) with the arguments a and b representing the actor and the object
(the body part that MOVEs) and the arguments x and y representing the initial and final location of
the body part. The precondition for MOVE is that the location of the body part is x, and the effect
is that the location of the body part is y.

5.2 Lexical Items as High-Level Tasks

Figure 3 shows how we implement words in natural language as high-level methods of the hier-
archical planning process, establish the initial state of the system for the planner, and execute the
planning process with words in the sentence as the high-level method and arguments to that method.
The “kick” method is implemented as kick(state,a,b,x,y) with four arguments: a and b
representing the actor and the object that gets kicked, and x and y representing the initial and final
location of the object. The implementation of kick has the actor, a, move their foot from an un-
known location toward the object, a propel of the object, and a ptrans by the actor, changing
the location of the object from x to y.

The planner method, pyhop.pyhop, is called with the state object and the task. The code
creates a state object for initial state of the world, state1, and initializes it with a member named
loc representing the location of each object as hashtable pairs. The initial state has both Lisa and
the ball at location Lisa, while the location of Lisa’s foot is unspecified. Words from the sentence
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def kick(state,a,b,x,y):
return [(’move’,a,’foot’,’?’,b),

(’propel’,a,b),
(’ptrans’,a,b,x,y)]

state1 = pyhop.State(’state1’)
state1.loc = {’Lisa’:’Lisa’,’foot’:’?’,’ball’:’Lisa’}

pyhop.pyhop(state1,[(’kick’,’Lisa’,’ball’,’Lisa’,’fence’)])

** pyhop, verbose=1: **
state = state1
tasks = [(’kick’, ’Lisa’, ’ball’, ’Lisa’, ’fence’)]

** result = [(’move’,’Lisa’,’foot’,’?’,’ball’),
(’propel’,’Lisa’, ’ball’),
(’ptrans’,’Lisa’,’ball’,’Lisa’,’fence’)]

Figure 3. Top: Pyhop implementation of the “kick” method as a sequence of operators: move, propel, and
ptrans. Code to establish the initial state, state1 consisting of initial locations of Lisa, Lisa’s foot (initial
location unknown), and the ball (at or near Lisa), and the call to the Pyhop planner with the task being a kick
“high-level” act. Bottom: output from the Pyhop planner with the resulting hierarchical task network plan
that decomposes the act from high levels of abstraction to the primitive operators representing CD primitives,
move, propel, and ptrans.

are fed into the planning process as arguments to the planner that include “kick” as the high level
task, and its arguments extracted from the sentence: “Lisa” as the actor, “ball” as the object being
kicked, “Lisa” as the initial location of the object, and “fence” as the final location of the object
after the kicking task is completed.

Executing the planner results in a conceptual analysis of the story that consists of the primitive
operators move, propel, and ptrans, with the appropiate arguments for each based on the high-
level task specification.

5.3 Discussion

The implementation of the kick method has three operators which are instances of CD primitive acts
that are meant to correspond to the CD conceptualization of the kick as a PTRANS with a PROPEL
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as its instrument, and a MOVE as an instrument of the PROPEL. However, the kick method has the
operators as a sequence of primitive acts, in the order MOVE, PROPEL, and PTRANS; this was
implemented so that the preconditions and effects of the primitive acts meet together properly, with
the effects of the PTRANS resulting in the location of the ball being at the fence.

Unfortunately this does not preserve the hierarchy of instrumentation relationships, and simply
presents the primitive acts as a sequence. The purpose of the instrumentation relationship between
the acts is to answer “how” questions relating the various acts. A classic CD story understander
(such as that in Dyer, 1982, or Lehnert, 1978) would answer a question like “How did Lisa get the
ball to the fence?” by corresponding “get the ball to the fence” to the PTRANS act, and following
the instrumental link from the PTRANS to the PROPEL instrumented by MOVE, and could answer:
“Lisa moved her foot towards the ball and struck it.”

This raises the issue of how instrumental links and other causal links between primitive con-
ceptualizations should be represented in the HTN conceptual analysis system. One might have the
planner’s hierarchy represent CD instrumentation links. In our example, this could be achieved by
making the PTRANS be a separate method whose implementation is just the PROPEL, and making
the PROPEL a separate method and making its implementation be the MOVE act. But in our case
this has the unintended consequence of making PTRANS overspecialized, so that all PTRANS acts
are implemented through kicking. If we continue our example from Section 2.4, we would also like
to implement a method for the word “punch” alongside our method for “kick”. “Punch” should be
implemented with a PTRANS, but with a PROPEL that is instrumented by a MOVE of the actor’s
fist instead of their foot.

For hierarchical planning, methods usually may have multiple implementations, and it is the
task of the planner to choose the “best” implementation through optimization. One could add a
second implementation for PTRANS to represent “punch”. But then the planner will not differen-
tiate between the two implementations when analyzing a text having “punch” versus a text having
“kick”—unless, of course, the state of the parse, including which word was being decomposed,
is part of the state space of the planner. In this case the PTRANS method could select between
“punch” and “kick” implementations by consulting this parse state information.

There has long been recognition that, in language understanding systems, the purpose of rep-
resenting plans and the links between actions in plans is explanatory, while, in most planning sys-
tems, the purpose is generating the plan (Schank & Abelson, 1977). Generally, more investigation is
needed on the best methods for unification of hierarchical planning, in which the only links between
acts in plans are through the hierarchy, and conceptual analysis, which has a variety of link types
that form connections between primitive acts.

6. Conclusion

This position paper explores the connections between hierarchical planning and natural language
understanding and argues for a unified view of conceptual primitive decomposition of natural lan-
guage and hierarchical planning. This view promotes novel studies of primitive decomposition sys-
tems that can cross between the two domains, and the reuse of methods, operators, and knowledge
structures from each domain. It establishes another unique route towards richer integration between
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planning systems and natural language systems, which could provide natural language understand-
ing and natural language generation capability from within automating planners to better understand
planning problem statements and explain the plans they generate. At the same time, work according
to this vision could provide deeper and more direct connections to powerful planning systems for
in-depth natural language understanding and story generation systems.

We also demonstrated a prototype of a hierarchical task network planning system that imple-
ments a conceptual primitive analyzer of natural language. Although HTN planners are similar to
conceptual analyzers in the way that they attempt to decompose tasks or decompose words into
combinations of primitive elements, we did encounter a number of practical issues to address in
immediate future work. While HTN systems do decompose in multiple levels of abstraction from
high-level methods to primitive operators, they may not preserve relationships between acts to be
used for explanation, as shown in the example of the “instrument” case links between primitive con-
ceptualizations used to answer “why” questions about the acts. In future work it may be possible
that the differentiation of “causal” connectives between primitive acts in CD could be reconciled
with or integrated with the precondition and effect relationships between acts as specified in the
planner. As we mentioned earlier, a more recent variant of hierarchical planning called Hierarchical
Goal Networks (HGNs) blends the best of sequential and hierarchical planning. We plan to explore
the benefit of representing portions of Conceptual Dependency hierarchies as HGNs.

Also, to make an HTN planner more like a conceptual analyzer, which takes actual natural
language as input, it is clear that some form of preprocessing is needed to properly invoke the
planner with the correct arguments of the high-level task (“kick” in our example). While a parser or
part-of-speech tagger may seem like a good choice initially to perform this function, to be more true
to the conceptual analysis tradition encourages research in approaches that integrate parsing more
strongly with the planner decomposition.

Specifying the domain for such systems is a tedious and error-prone activity as it relies on hand-
coded effort. Another direction we plan to explore is to automatically learn the language hierarchies
from traces of actions (e.g., using techniques such as that of Hogg et al., 2009), which would greatly
reduce the burden of domain designers. Automated approaches could leverage the work of existing
ontologies to bootstrap an initial set of language hierarchies. From this, hierarchies could be refined
using techniques such as those from the Never Ending Language Learner (Mitchell et al., 2018).
Finally, these system integration efforts may allow for planning systems to use knowledge struc-
tures from language understanders and for language understanders to use knowledge from planning
systems; further work on these knowledge engineering issues is needed.

While we have shown that a planner can be used to perform conceptual analysis on language,
we envision using planning for commonsense reasoning and inference about narratives. One of
the motivations of integrating planning systems in natural language or narrative understanding is
the ability to reason that certain acts occurred in the story (or can be predicted to occur in the
story) even when they were not stated explicitly, based on the reasoned goals and plans of story
actors. Our prototype does not yet do that kind of planning, but this may be a product of future
integration. If the narrative understanding process is “reversed” into natural language generation,
this work may enable generation of better explanations of plans generated by HTN systems. Finally,
there are obviously further deep connections between primitive decomposition, natural language
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understanding, and planning through Schank-Abelson scripts (Schank & Abelson, 1977) that have
yet to be explored.
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