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Article

Metric Ensembles Aid in Explainability: A Case Study with
Wikipedia Data
Grant Forbes 1,* and R. Jordan Crouser 2
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2 Department of Computer Science, Smith College, Northampton, MA 01063, USA
* Correspondence: gforbes@ncsu.edu

Abstract: In recent years, as machine learning models have become larger and more complex, it has
become both more difficult and more important to be able to explain and interpret the results of those
models, both to prevent model errors and to inspire confidence for end users of the model. As such,
there has been a significant and growing interest in explainability in recent years as a highly desirable
trait for a model to have. Similarly, there has been much recent attention on ensemble methods,
which aim to aggregate results from multiple (often simple) models or metrics in order to outperform
models that optimize for only a single metric. We argue that this latter issue can actually assist with
the former: a model that optimizes for several metrics has some base level of explainability baked
into the model, and this explainability can be leveraged not only for user confidence but to fine-tune
the weights between the metrics themselves in an intuitive way. We demonstrate a case study of
such a benefit, in which we obtain clear, explainable results based on an aggregate of five simple
metrics of relevance, using Wikipedia data as a proxy for some large text-based recommendation
problem. We demonstrate that not only can these metrics’ simplicity and multiplicity be leveraged
for explainability, but in fact, that very explainability can lead to an intuitive fine-tuning process that
improves the model itself.

Keywords: metric ensembles; network ensembles; Goodhart’s law; optimization; explainability;
interpretability

1. Introduction

We are interested in the problem of scanning a large corpus of text data to find items
to recommend to a user, given some set of example data. In particular, we are concerned
with two key aspects of this problem:

1. To what extent is the model’s particular selection of items from the corpus explicable
to the user?

2. Are the metrics of similarity that the model optimizes for ones that are sufficiently
close to the user’s preferences – in other words, how do we quantitatively specify, as
closely as possible, a qualitative and subjective notion of “quality” in the eyes of the
end user?

There is a wealth of prior literature discussing the first of these issues. Oftentimes,
this literature involves post hoc explainability tools, which take as input some “black box”
model, then perturb its inputs and assess counterfactual responses the model could have
given in order to assess which aspects of the input were most important. An example of
this type of method can be seen in [1].

For the latter of these issues, one particularly well-documented approach is to take
an ensemble of metrics, as heuristics approximating the un-measurable goal that is to be
optimized: this turns out to be less difficult to “hack” than a single heuristic, even if the
single heuristic is relatively sophisticated, and the individual heuristics in the ensemble
relatively simple.
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However, previous work has not addressed the potential for metric ensembles to
address the former of these problems, which is what we do in this work. We will first
review the motivation behind metric ensembles as improving robustness over single-metric
models. We will then cover the variety of ways in which this has been implemented in
prior literature. We will then demonstrate a new method for using metric ensembles as a
tool not just for robustness, but also for both explainability and model fine-tuning by an
end user. We do this via a preliminary toy model using Wikipedia data.

2. Related Work

Here, we review the literature surrounding the problems with optimizing for single
metrics, and the benefits of ensemble and related methods for dealing with these.

2.1. Single Metrics Are a Problem

There is a wide array of previous literature discussing the potential of machine learning
models to overfit the metrics on which they are trained, with adverse consequences. Ref. [2]
gives a good summary of many of these issues. It includes examples particularly relevant
to recommender systems, such as the documented potential for a recommender system to
have radicalizing effects [3]. Recommender systems, particularly those trained exclusively
on accuracy metrics, have also been found to foster addictive behaviors [4]. Many of
the beyond-accuracy metrics discussed previously in this paper are often used with the
intention of counteracting these sorts of tendencies. These tendencies have been noted
to be particularly strong when relying on what are often called “revealed-preference”
metrics: those signals which are not taken from direct, intentional human feedback, but
rather from human behavior (click data, dwell time, etc.) that is merely assumed, under
some model, to reveal some underlying preference structure. Ref. [5] gives a detailed
analysis of the effects of this increasing reliance on revealed-preference metrics from an
anthropological perspective.

To optimize for a single metric based explicitly on human feedback, however, is also
gameable: ref. [6], for example, demonstrates empirically that direct human feedback is not
mathematically rational, and can be gamed or inconsistent with itself based on alternate
framing of issues. The issues, then, run deeper.

This general problem is often referred to in the literature within the context of Good-
hart’s law. First coined in [7], it states that “any observed statistical regularity will tend
to collapse once pressure is placed upon it for control purposes”. Phrased more concisely
in [8], it states “when a measure becomes a target, it ceases to be a good measure”. Any
quantifiable metric (i.e., “minimize L2 loss between predicted click rate and actual click
rate given the titles of news articles on MIND”) [9] is necessarily just an approximation for
some fuzzy, only partially-defined goal that we really want (“recommend an article the
user wants to read”). As such, Goodhart’s law states that, as a model optimizes for this
quantifiable metric, the metric itself will tend to no longer serve as a reliable proxy for our
true goal. As expounded on in [2], this is a ubiquitous problem for AI and leads to the sort
of adverse effects documented in, i.e., [3,4].

Goodhart’s law is explored in more detail in [10], which demonstrates that it is actu-
ally a cluster of four mathematically distinct statistical tendencies. Ref. [11] develops a
simple model of metric alignment with a goal, and shows that, given a very general set of
assumptions, optimizing for an incomplete heuristic to some “true” utility function will
invariably lead to an arbitrary loss in true utility. Ref. [12] discusses this mismatch between
actual normative value and engagement metrics, and also presents a model by which some
“anchor” metric can be used to estimate the strength of each other metric in predicting
value using a Markov model. Of course, this approach still requires the assumption that
there is some quantifiable and known metric that is able to be used as the “true” value of
some subset of the data, and if this assumption is made erroneously then Goodhart effects
between the assumed “true” metric and the actual desired goals are still to be expected.
The base idea of this paper, however, of analyzing multiple metrics’ correlations with each
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other in order to minimize these effects, holds a lot of promise and is relevant for any model
that seeks to optimize an ensemble of metrics.

2.2. Ensembles Address This Problem

There is a large body of prior work suggesting that ensemble methods – using either
multiple models, or a model trained on multiple metrics – do a lot towards mitigating the
problems outlined in Section 2.1, and often outperform their single-model, single-metric
counterparts. Some of this work focuses on independent models each of which maps onto
some single metric, but with somewhat uncorrelated noise that cancels out in aggregate.
Ref. [13], for example, gives a defense of the “robust beauty” of improper model ensembles
for regression problems: that is to say, it shows that a large ensemble of models, even
if evenly rated without respect for any a priori superiority of one metric over another,
will often outperform human clinical judgment. Ref. [14], which specifically discusses the
general case of using recommender systems for an intelligence analyst, mentions that hybrid
systems, which combine both collaborative and content-based methods through some
“decision fusing method”, such as a neural ensemble or weighted sum, are of particular
interest. Ref. [2], after a broad discussion on the problems single metrics pose for AI
development, explicitly proposes metric ensembles as a solution, citing arguments made
in [15] regarding metric-gaming. Ref. [16], speaking of neural network ensembles, shows
that in the general case, assuming uncorrelated errors between models (something also
emphasized, and referred to as “diversity” in other work, i.e., [17], though this is in a
different sense of the word than that used elsewhere in this paper), we can expect the mean
squared error from some true value function of a constant-weight linear sum model the be
in expectation 1

N that of any individual model, where N is the number of models in the
ensemble. This lessening of divergence between the ensemble model and the true value it
is estimating, then, leaves less room for Goodhart effects.

Note that, while some of this work focuses on metric ensembles (e.g., [2]), others focus
on ensembles of models trained on a single metric (e.g., [13,16]). This research on model
ensembles is directly applicable to metric ensembles; however, a model trained on some
metric can be viewed as a new proxy metric that imperfectly approximates the metric on
which it is trained. This view is, in fact, taken in any work which trains a neural network to
approximate human feedback, then uses that trained network as part of the loss function for
a new model (e.g., [18]). Any research that demonstrates the efficacy of model ensembles,
then (of which there is much), implicitly demonstrates the efficacy of metric ensembles as
well. In Section 2.3, we briefly review some of the work in this area that is most potentially
relevant to our stated interest.

2.3. A Brief Literature Review of Neural Network Ensembles

Neural network ensemble research is often split into two categories: that which deals
with regression problems and which deals with classification problems. Insights from both
can be mapped onto metric ensemble research because the eventual “goal” can be treated
as either a binary (“give a ‘good’ recommendation”) or a scalar (“recommend the item that
will return the highest utility for the user”).

For regression problems, Ref. [19] gives a thorough survey on regression ensem-
ble models, and specifically methods of optimizing their weights. This is often done in
some sort of linear sum with static weights, but more complex models are also reviewed
that dynamically adjust model weightings [20]. In terms of these static weight papers,
ref. [17] building on the work of, e.g., [16], demonstrates a way to optimally set the weights
between a set of regression models using some preexisting estimation of their accuracy
(a test on some small training set for which “true” labels are known, for instance) plus their
correlations with each other on another (potentially much larger) unlabeled set of data. It is
likely relevant to some eventual model that weighs metrics together in an ensemble.

For classification problems, refs. [21–23] all follow a line of work that shows how to
both determine the accuracy of a set of models and determine the best set of weightings
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between them in an ensemble model, using solely their agreement with each other on
unlabeled data. This is incredibly relevant, because quantitative metrics, by their very
nature, are simply proxies for some qualitative value that we actually care about, but can
never directly access—this means that in the realm of metrics, unless we are willing to
make additional assumptions (see the “anchor variable” method in [12] for an example),
we can only ever have access to “unlabeled” data. Ref. [21] demonstrates the efficacy of
this method on two distinct real-world datasets, suggesting generalizability, and [22,23]
expand on the method. Note that they show their method does not necessarily need the
assumption that the errors of the models being used are uncorrelated from each other: this
makes their result potentially quite general. An incorporation of a weighting method used
in these papers, at least for all metrics that can be reasonably approximated as “classifiers”,
would likely result in an ensemble-based model that is strictly better than one which simply
uses a naive linear sum, as in [13] (this is despite the fact that unweighted sums with many
ensembled, noisy metrics are, themselves, already surprisingly robust).

2.4. Weak Supervision as an Extension of Metric Ensembles and Data Augmentation

Another field of research that is suggestive of the potential for metric-ensemble meth-
ods in a large-scale text-based recommendation model is that of weak supervision. The
idea behind this field of research is that there are many areas (intelligence reports being one
of them) in which labeled data is hard to come by, and difficult/costly to create (requiring
special expertise/security clearances on the parts of the labelers, for example), but in which
unlabeled data is much more plentiful and comparatively easy to curate. When this is the
case, many weak heuristics/metrics can be applied to an unlabeled dataset, which is then
combined in some way to create “noisy” labels for training a model. This allows for large
datasets to be curated, in a way that is not prohibitively costly.

One particularly promising tool out of this field is Snorkel [24], which is an open-
source tool allowing for easy programming of these heuristics. It automatically combines
these into a generative model that resolves inconsistencies between heuristics [25], and
applies noisy labels to the dataset. It is for classification heuristics only at the moment, but
this itself already has lots of potential for a large-scale text-based recommender system
(classifications such as “relevant” and “not relevant” might be sufficient, for example), and
the general framework of Snorkel could be potentially extended to regression problems for
any metrics that absolutely must be framed this way. In fact, the (regression-based) simple
metrics implemented in Section 3 are inspired, in part, by the approach of Snorkel, and
thus demonstrate the potential efficacy of such an approach.

A subfield of weak supervision that may be of particular relevance to the development
of a large-scale text-based recommender system is Positive-Unlabeled (PU) learning. PU
learning studies the case where a large, unlabeled dataset, along with a small dataset with
only positive labels, is available. Ref. [26] gives a good survey of this field. Given that
we are likely to have access to a body of reports an analyst has already labeled (either
implicitly or explicitly) as “useful”, this could be treated as the positive-labeled data, and
the aggregate of existing other reports/intelligence sources could then be treated as the
unlabeled portion. Such an approach is promising for this particular domain.

2.5. Metrics for an Eventual Large-Scale Ensemble-Based Text Recommender System

Many metrics could be potentially useful as part of a larger ensemble for an eventual
large-scale text-based recommender system. One of the most common is click rate accuracy
for, i.e., news articles based on title, such as those often used with the MIND dataset [9].
Note that accuracy metrics that take the actual body of articles themselves are also worth
considering, though these are less present in the literature. There are also accuracy metrics
that look at, e.g., dwell time, and potentially other analyst-specific actions such as adding
a report to an ongoing portfolio: these could be linked together and incorporated into a
Markov model, building on the work of [12]. Relying solely on accuracy metrics has been
shown to cause unforeseen issues, however, as is discussed in [27]. Instead, metrics such as
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diversity and novelty ought to be incorporated, in order to prevent the sort of Goodhart
effects discussed in earlier sections. An overview of such diversity metrics, and others, can
be found in [28]: note however that the straightforward incorporation of these as a tool for
training, or for direct recommendations, comes up against two problems. First, diversity
metrics are often calculated based on a slate of recommended candidates, or a candidate and
some background distribution of candidate characteristics, and therefore have a different
domain than most other metrics, which have some characteristics of a particular candidate
and user pair as their domain. This means they cannot be straightforwardly combined—i.e.,
in a weighted sum—with most other metrics. Second, most of the literature seems to
involve using them as a post hoc evaluative tool, rather than as some additional reward
for a training loop. Both of these should be kept in mind, although neither of these claims
applies to all papers cited in the survey.

Another general type of metric that could be used to train a model and compiled it
into an ensemble is human feedback. Training a model on human feedback is common in
the literature, and often can be used to minimize Goodhart effects. Some of the literature,
actually, has been training on an ensemble of human feedback for multiple different
qualitative metrics: “helpfulness” and “harmlessness” for an AI assistant [29]. This itself
can be conceptualized as an ensemble method and provides similar benefits.

Of course, human feedback is often costly to obtain and deploy at scale. Obtaining
explicit feedback on just a subset of training data, as part of a weak supervision method,
has been shown to be helpful, and indeed can be incorporated into Snorkel [24]. Another
option is to train a model to approximate human feedback, and then deploy that model’s
approximation as the signal itself at scale during training [18].

3. Metric Ensembles Aid in Explainability: A Demonstration with Wikipedia Data

In Section 2, we reviewed some of the literature illustrating how ensemble methods can
provide many benefits over non-ensemble metrics for optimization problems (including
recommender systems), such as the decreased chance of overfitting and robustness to
Goodhart effects. In addition to these benefits in prior literature, however, we have also
developed a working theory of metric ensembles’ utility in supporting explainability. We
developed a working prototype to demonstrate this potential, using Wikipedia pages as a
rough proxy for the kinds of linked data that an analyst might encounter.

Recommender models that are fit to a single, complex metric can be a black box. For
example, assume we have a model trained on the MIND dataset, such as NMRS, which
was designed to maximize click rate based on the article title. If we then deploy this model
to recommend new articles based on a user’s prior clicks, the resulting recommendations
do not come with any inherent explanation for why they were recommended, beyond the
explainability inherent to the structure of the model and the objective itself (“presumably,
it thinks this user would be likely to click on these article titles”). This characteristic can be
particularly problematic when the model provides recommendations that miss the mark,
especially in applications where the consequences for missed information are high; because
the user is not provided with an explanation, “oddball” recommendations can quickly
contribute to the erosion of trust in the system [30].

However, consider an alternative where instead of using a single black-box metric
to measure fitness, we employ a suite of several complementary metrics or datasets and
train different models to optimize for each of them. In cases where the individual models
diverge in their evaluation of a candidate article, then the very fact that these metrics were
divergent tells us something about the article itself, and the particular ways in which it is
potentially useful: the ensemble model can simply report, for its top candidates, which
particular metrics that candidate satisfies, and to what degree. This gives the analyst a
better idea about the “reasoning” behind the recommendations, which in turn can help to
both generate confidence in the model when it is performing well and preserve trust in cases
where it has failed. Moreover, a deeper understanding of why a given recommendation
was made affords opportunities for additional model tuning and refinement.
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The degree to which this information adds value is directly related to the choice of the
metrics themselves: by selecting metrics that are individually understandable (e.g., “This
article mentions an entity of interest” or “This article came from a trusted source”), the
overall explainability of the ensemble is preserved. One potential pitfall of this method is
that many useful metrics are not easily interpretable to a non-expert: however, the negative
effects are likely mitigated by the fact, discussed above, that many “bad” (and therefore
possibly simple) metrics used in an ensemble can reliably outperform a single metric (or
human expert) in isolation [13].

3.1. Recommending Wikipedia Articles: A Toy Example

We devised a toy example to demonstrate this potential aid in explainability that
metric ensembles could provide. In this toy model, Wikipedia pages serve as the proxy for
intelligence items an analyst might want to consider reading. We accessed these through
the Wikipedia python library, which is capable of pulling all the content of articles, as
well as the metadata, such as links to other articles, article categories, etc. In this problem
formulation, we prepared a list of pages that were in the example corpus: pages that we
know the user is interested in or has added to their portfolio. There is also a secondary list
of candidate pages: these are pages that need to be evaluated for similarity to the corpus
along some ensemble of metrics. The goal, then, is to find which of the candidate pages is
the best recommendation given the pages in the corpus, and deliver some insight, based on
the metric ensemble used, about why this recommendation was made.

As a beginning proof of concept, we used an example corpus that consisted of just
two Wikipedia pages: the entries for apples (accessed on 20 February 2023) and oranges
(accessed on 20 February 2023). All pages referenced were accessed in July of 2022. The
task of collecting candidates on which to run a model and give recommendations was
considered outside of the scope of this demo, at least as an automatic process: our solution
here was to just select a plausibly related page, collect all the pages linked to from that
page into a list, and consider that list the list of candidate pages. This was done as a
pre-processing step. For the candidate pages corresponding to the aforementioned corpus
of apples and oranges, we used every page linked to by the page for bananas (accessed on
20 February 2023).

We then evaluated each candidate page according to five relatively naïve metrics:

• Shared Links: this metric counts how many pages linked from the candidate are also
linked in the corpus, and double-counts links that were linked by multiple items in
the corpus.

• Links To Corpus: this metric counts how many pages within the corpus, if any, are
linked to by the candidate.

• Linked From Corpus: aptly named, this metric counts how many pages in the corpus,
if any, link to the candidate article.

• Shared Categories: this metric counts how many article categories (such as “Edi-
ble fruits”, “Staple foods”, or “Articles lacking reliable references from April 2022”) are
shared between the candidate and pages in the corpus, double counting
where appropriate.

• Large Article: this metric just counts the word length of the page content. Intuitively,
this metric is assuming that larger articles are “more important”, and disincentivizes
recommending stubs.

These metrics were chosen primarily for ease of explainability and base plausibility,
rather than being individually robust: this was done, in part, to highlight the way in which
individually insufficient metrics, in an ensemble, can often generate plausible recommen-
dations by “covering” each others’ insufficiencies. There are, of course, many other similar
metrics we could have chosen, and future work will involve a more robustly-motivated and
wider selection of base metrics. These metrics were calculated over all the candidates, and
then each candidate was given a percentile score for each metric indicating where it fell on
that metric relative to the other candidates. This was done as a normalization step, ensuring

https://en.wikipedia.org/wiki/Apple
https://en.wikipedia.org/wiki/Orange_(fruit)
https://en.wikipedia.org/wiki/Banana
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that metrics that were naturally high (such as Large Article) would not artificially wash
out potentially relevant information measured by other metrics. This was not a trivial
choice: another approach could have been to normalize all metrics to a Gaussian with
a mean of 0 and a standard deviation of 1. A metric ensemble using this normalization
method would likely have a tendency to more greatly favor candidates that are an outlier in
one metric, but unimpressive in the others. A comparison between normalization methods,
however, is left to future work.

Once the percentiles were calculated, we found a total score for each candidate by
summing the individual metrics—initially, this aggregation was performed with constant
weights. We then sorted the candidate list by this final score to obtain a top ten and bottom
ten list of candidates: those pages are the most and least likely to be good recommendations,
according to this model. These recommendations can be seen in Table 1.

Table 1. Top ten “best” and “worst” recommendations for the corpus [apples, oranges] from the
links on the bananas page according to the initial model, with even weights for each metric.

Rank Highest Scoring Lowest Scoring

1 Sugar Flying Jacob
2 Flowering Plant Banana Research Station, Kannara
3 Dietary Fiber Mother Nature Network
4 Carbohydrate Chapo (beverage)
5 Fruit Hakam
6 Maize World Banana Forum
7 Soybean Cayeye
8 Plant Banana Custard
9 Fungus Tacacho

10 Tomato Bluggoe

From a glance, it can be seen that the model is performing passably well: at least,
the top 10 recommendations seem clearly more relevant than the bottom 10. For further
insight into this model, however, we can plot the relative percentiles of each metric for any
set of candidates we want to compare. Such plots, generated for the top 5 and bottom 6,
respectively, are shown in Figure 1.

There are a few things of note from these “explainability plots.” Firstly, you’ll notice
the rather homogeneous scores in the “Often Links to Corpus” and “Often Linked Within
Corpus” metrics. Because the corpus in this toy example only had length 2, these could
each only take on 3 possible values: 0, 1, or 2. Thus, they are somewhat noisy signals, and
maybe ought to be deprioritized. Given this post hoc feedback (something that a human
subject expert, such as an analyst, could very well provide an analogous version of in
real-time), we can drop both these metrics from the weighting, and generate a new set of
recommendations, seeing if that changes things for the better. A set of recommendations
given when both these metrics are dropped is shown in Table 2.

There are a few things to note about this table, particularly in comparison with the
top recommendations in Table 1. There is a significant de-emphasis on nutritional pages
such as “Carbohydrate” and “Dietary Fiber”. There are certain changes that seem distinctly
reasonable: the inclusion of “Coconut” and “Banana”, for instance, or the elevated rank-
ings of “Maize”, “Plant”, and “Soybean”. Other inclusions seem more suspect, however:
particularly the new additions of “Biodiversity”, “Fungus”, “North America”, and, most
puzzling of all, “Cat”. These inclusions may be taken to indicate that the intuitive iterative
change we made was not entirely successful in improving the overall ensemble. This could
be an indictment of the method as a whole, of the specific metrics we are using, or of the
fact that we iterated by removing two metrics entirely, rather than by simply adjusting
their weights downward: after all, doing so would cause us to lose some of the benefits of
ensemble methods that we are trying to gain in the first place.
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Figure 1. The (top) and (bottom) recommendations compared with each other along each
metric used.

Table 2. Top ten “best” recommendations for the corpus [apples, oranges] from the links on the
bananas page using an even weighting of the metrics “Shared Links”, “Shared Categories”, and
“Large Article”.

Rank Highest Scoring, 2nd Iteration

1 Coconut
2 Maize
3 Biodiversity
4 Plant
5 Soybean
6 Fungus
7 Tomato
8 North America
9 Cat

10 Banana

These a priori diagnoses, however, can be investigated further due to the inherently
explainable nature of the metric ensemble model. We can plot these potentially problematic
recommendations against one of the recommendations that we (as the stand-in for a fruit
“subject matter expert”) deem as particularly desirable: banana, for instance. Such a plot is
depicted in Figure 2.

Here, we see that “Banana” ranks above all of the suspect recommendations in the
“Shares links” metric, but below all of them in the remaining two metrics we used for the
ranking. We also see that it performs either average or better than average in the two metrics
that we dropped from consideration: an indication that, perhaps, we dropped these metrics
prematurely. We can, then, iterate the weights by which we generate recommendations
another time: say, set the weight for “Shares links” at 2, the weights for “Links to corpus”
and “Linked from corpus” to 0.5, and the others to 1. This incorporates our insight
gained from the previous two iterations, and thus hopefully approximates some iterative
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process that leverages the inherent explainability of ensembles to incorporate domain
expert feedback. A plot of the top 5 recommendations under this new rating is depicted
in Figure 3, and a comparison of the top recommendations for each iteration is shown in
Table 3.

Figure 2. Four “problematic” recommendations (according to a subject matter expert) contrasted
with a recommendation deemed particularly good.

Figure 3. Metric-based explanations for the final top 5 recommendations after iterative
weight adjustment.

Table 3. Top ten “best” recommendations for the corpus [apples, oranges] from the links on the
bananas page for each iteration of metric weights.

Rank 1st Iteration 2nd Iteration Final Iteration

1 Sugar Coconut Sugar
2 Flowering Plant Maize Flowering Plant
3 Dietary Fiber Biodiversity Maize
4 Carbohydrate Plant Soybean
5 Fruit Soybean Plant
6 Maize Fungus Tomato
7 Soybean Tomato Dietary Fiber
8 Plant North America Banana
9 Fungus Cat Fungus

10 Tomato Banana Fruit
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Hopefully, it is apparent that the final iteration is more plausible than the other two:
it is the only iteration, for instance, in which the page for “Banana” ranks above that
for “Fungus”.

3.2. Further Extensions and Discussion

It is a fair question, of course, whether this demo can plausibly map onto a more
realistic scenario, seeing as most intelligence analysts are working with a vastly different
domain of data than Wikipedia pages on fruit. In order to test a perhaps more realistic
example, we assembled a new corpus, consisting of the pages for “climate change”, “fossil
fuel”, and “solar panel”. For the candidate pages to be recommended, we took every page
linked to the page for the 2019 UN Climate Action Summit. The top 10 recommendations
from this process are depicted in Table 4, and a metric-based explainability chart for the top
recommendations are in Figure 4.

These recommendations seem roughly reasonable, particularly considering the sim-
plicity and individual noisiness of each of the ensembled metrics. The comparative chart
seems to suggest that “Pakistan” and “European Union”—two of the recommendations
that are arguably not as relevant—are both particularly high in the “Large Article” and
“Shares Categories” metrics. This suggests that perhaps a domain expert in this area
could use a similar explainability chart to adjust the recommendation ratings accordingly.
Brown et. al. [31], for instance, demonstrated that leveling human expert domain knowl-
edge through a simple interface can, in just a few iterations, successfully distinguish
between important metrics and those that are irrelevant. Or perhaps this knowledge could
simply be incorporated to give the user an intuitive understanding of the source of the
feedback, with different icons associated with heaviness toward a particular metric beside
a recommendation, and this intuitive “weights adjusting” could go on flexibly inside the
user’s head, as they learn which icons tend to be relevant in which scenarios, rather than
as part of some explicit human-in-the-loop system. There is a myriad of ways to incorpo-
rate the explainability of this model: this demonstration is simply meant to illustrate its
potential, and the specifics of how to best incorporate such a thing are left to future work.

One plausible objection to this toy demo might be that the candidate lists, in both
of the examples given, have been taken from the links of pages that we would a priori
already expect to be somewhat related to the corpus: bananas are relatively related to
apples and oranges after all, etc. Might this pre-selection be responsible for a large part of
the effectiveness of the technique, effectively lending the metric ensemble an illusion of
effectiveness simply by being fed a list of candidates that are already quite plausible? To
test this, we can generate a candidate list from a page that is, on its face, wholly unrelated
to the corpus, and run this through the model. We ran the links from the page for banana
through the model with the climate change-related corpus in order to test this: if it gave
significantly worse performances than the other tests we have run thus far, then that
would be an indication that we were failing to account for the extent to which our pre-
selection of candidate pages was giving the model a boost in terms of making plausible
recommendations. The top ten candidate pages from this are shown in Table 5.

This table shows that indeed, this model seems to function plausibly well even with a
non-ideal list of candidate pages, and a handful of noisy metrics. Such results indicate the
strong potential of ensemble metric methods for both the effectiveness and explainability,
of a large-scale text-based recommender system.

Another point of note, and possible objection to the efficacy of this method at scale, is
that the individual metrics chosen here are, by themselves, rather explainable. It could be
argued that this inherent explainability is doing much of the heavy lifting and that if more
complex, internally opaque metrics were instead used—say, a large neural model trained
to predict click rate based on the title for some corpus of similar data (the MIND dataset for
instance)—much of the explanatory value of this method would be lost, as such a model
itself is not easily translated into a heuristic in the same way as, i.e., Shared Links.
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Table 4. Top ten “best” recommendations for the corpus [“climate change”, “solar panel”, “fossil
fuel”] from the links on the page “2019 UN Climate Action Summit”, using the final iterative
weighting from the fruit example.

Rank Page

1 European Union
2 Greenhouse Gas Emissions
3 Greta Thunberg
4 Pakistan
5 Paris Agreement
6 Carbon Neutrality
7 Hungary
8 France
9 United States

10 Russia

Figure 4. Metric-based explanations for the climate corpus from the UN Summit page.

Table 5. Top ten “best” recommendations for the corpus [“climate change”, “solar panel”, “fos-
sil fuel”] from the links on the page for “Bananas” using the final iterative weighting from the
fruit example.

Rank Page

1 Biodiversity
2 Plant
3 Developing Country
4 Drought
5 Eutrophication
6 Agriculture
7 North America
8 London
9 Photosynthesis

10 Water Purification

We argue, however, that these complex models are themselves inevitably trained on
comparatively simple metrics (click rate prediction, in this example). Because of this, when
these models are deployed as part of a larger metric ensemble, their output can be used as
a proxy for the simpler, more inherently explicable metric they were themselves trained
on. The click rate predictor model, for example, could be explained to the end user as
“Likelihood Users Similar To You Would Click This Title”. Obviously, the exact phrasing of
this reduction of a complex model to its proxy would not be a trivial choice, and would
inevitably depend on the expected knowledge level of the end user using the software. We
imagine there to be a likely trade-off in these situations between the simplicity (and thus
explanatory power) of the explanation linked with a more complex metric and its accuracy
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at encapsulating that same metric, but such a trade-off is something that can be explicitly
managed depending on a given complex metric and use-case. Certainly, the exact best
practices for navigating these issues are an important topic for future work.

4. Conclusions

Prior work has demonstrated that metric ensembles are a powerful tool for improving
over single-metric models in terms of performance. We demonstrate that, in addition to
these performance benefits, they are also a powerful tool to enhance the explainability and
real-time adaptability of a model. While the demonstration given is obviously very limited
in scope, we believe that it makes a succinct and compelling case for metric ensembles
as a tool for explainability. In future work, it is essential to demonstrate this principle in
a systematic way. Additional experiments on a large text corpus such as MIND [9] with
both accuracy- and non-accuracy-based metrics would test the feasibility of applying this
method at scale.
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