1999

Computational Geometry Column 35

Joseph O'Rourke
Smith College, jorourke@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs

Part of the Computer Sciences Commons, and the Geometry and Topology Commons

Recommended Citation
https://scholarworks.smith.edu/csc_facpubs/79

This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu
Computational Geometry Column 35

Joseph O’Rourke*

Abstract

The subquadratic algorithm of Kapoor for finding shortest paths on a polyhedron is described.

A natural shortest paths problem with many applications is: Given two points s and t on the surface of a polyhedron of n vertices, find a shortest path on the surface from s to t. This type of within-surface shortest path is often called a geodesic shortest path, in contrast to a Euclidean shortest path, which may leave the 2-manifold and fly through 3-space. Whereas finding a Euclidean shortest path is NP-hard [CR87], the geodesic shortest path may be found in polynomial time. After an early $O(n^5)$ algorithm [OSB85], an $O(n^2 \log n)$ algorithm was developed that used a technique the authors dubbed the continuous Dijkstra method [MMP87]. This simulates the continuous propagation of a wavefront of points equidistant from s across the surface, updating the wavefront at discrete events. It was another decade before this result was improved, by a clever $O(n^2)$ algorithm that does not track the wavefront [CH96]. This latter algorithm is simple enough to invite implementations, and several have appeared. Fig. 1 shows an example of using one implementation to find the shortest paths from s to each vertex of a convex polyhedron.

![Image of shortest paths](image)

Figure 1: Two views of the shortest paths from a source point s to all $n = 100$ vertices of a convex polyhedron [OX96]; s is obscured in the “backside view” (b).

Although other geometric shortest path problems saw the breaking of the quadratic barrier (see [Mit97]), paths on polyhedra resisted. One impediment is evident from Fig. 1: even on a convex polyhedron, there can be $\Omega(n^2)$ crossings between polyhedron edges and paths to the vertices. So any algorithm that maintains these paths and treats edge-path crossings as events will be quadratic in the worst case. The continuous Dijkstra paradigm faces a similar dilemma: Examples exist for which there are $\Omega(n^2)$ wavefront arc-edge crossings. These obstacles have recently been surmounted by a new algorithm by Sanjiv Kapoor that achieves $O(n \log^2 n)$ time complexity [Kap99].

Kapoor’s algorithm follows the wavefront propagation method, and is surprisingly similar in overall structure to the original continuous Dijkstra algorithm [MMP87].

The algorithm maintains two primary geometric objects throughout the processing: the wavefront itself, W, which is a sequence of circular arcs, each centered on either s or a vertex of the polyhedron (where paths...
may turn on nonconvex polyhedra); and a collection B of boundary edges, edges of the polyhedron yet to be crossed by the wavefront. Both of these have size $O(n)$. Elements of W and elements of B are related and grouped by a nearest neighbor relation: $e \in B$ is associated with arc $a \in W$ if a is closer to e than to any other arc in W. Boundary edges associated with one arc are grouped into a boundary section, and arcs associated with one boundary edge are grouped into a wavefront section. It is this grouping that permits avoiding the quadratic number of arc-edge crossing events. The number of wavefront section-edge events is only $O(n)$.

There remains another quadratic quagmire to be skirted: Identifying the next event requires computing the distance from an edge to a wavefront potentially composed of n arcs. Kapoor handles this by building a hierarchical convex hull structure for both the wavefront sections and the boundary sections. Subhulls are connected by tangent bridges; internal nodes store an “alignment angle” that represents the unfolding relationship between sibling hulls. These structures permit computing the distance between a W-section and a B-section in (essentially) logarithmic time. Updating the data structures consumes $O(\log^2 n)$ amortized time per event, which leads to the final $O(n \log^2 n)$ time complexity.

The details are formidable, and implementation will be a challenge. But the many applications and the significant theoretical improvement suggest implementations will follow eventually.

References

