Document Type


Publication Date


Publication Title

Extended abstract for CVPR 2007 workshop on Evaluating Human Motion


Quantitative comparison of algorithms for human motion capture have been hindered by the lack of standard benchmarks. The development of the HumanEva I & II test sets provides an opportunity to assess the state of the art by evaluating existing methods on the new standardized test videos. This paper presents a comprehensive evaluation of a monocular recognition-based pose recovery algorithm on the HumanEva II clips. The results show that the method achieves a mean relative error of around 10-12 cm per joint.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Nicholas Howe


Author’s submitted manuscript.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.