Document Type

Conference Proceeding

Publication Date


Publication Title

International Conference on Frontiers in Handwriting Recognition


Recent work on the “alphabet soup” paradigm has demonstrated effective segmentation-free character-based recognition of cursive handwritten historical text documents. The approach first uses a joint boosting technique to detect potential characters - the alphabet soup. A second stage uses a dynamic programming algorithm to recover the correct sequence of characters. Despite experimental success, the ad hoc dynamic programming method previously lacked theoretical justification. This paper puts the method on a sounder footing by recasting the dynamic programming as inference on an ensemble of hidden Markov models (HMMs). Although some work has questioned the use of score outputs from classifiers like boosting and support vector machines for probability estimates, experiments in this case show good results from treating shifted boosting scores as log probabilities.


character detection, word recognition, inference models, cursive, historical manuscripts

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© the authors


Author’s submitted manuscript.

icfhr08talk.pdf (2793 kB)



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.