Document Type

Conference Proceeding

Publication Date


Publication Title

Proceedings of the 18th Annual Canadian Conference on Computational Geometry, CCCG 2006


Soss proved that it is NP-hard to find the maximum flat span of a fixed-angle polygonal chain: the largest distance achievable between the endpoints in a planar embedding. These fixed-angle chains can serve as models of protein backbones. The corresponding problem in 3D is open. We show that two special cases of particular relevance to the protein model are solvable in polynomial time: when all link lengths are equal, and all angles are equal, the maximum 3D span is achieved in a flat configuration and can be computed in constant time. When all angles are equal (but the link lengths arbitrary), the maximum 3D span is in general nonplanar but can be found in polynomial time.

First Page


Last Page



© the authors


Peer reviewed accepted manuscript.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.