Document Type


Publication Date


Publication Title

Proceedings of the 17th Fall Workshop on Computational Geometry, 2007


We show that the space of polygonizations of a fixed planar point set S of n points is connected by O(n2 ) “moves” between simple polygons. Each move is composed of a sequence of atomic moves called “stretches” and "twangs". These atomic moves walk between weakly simple "polygonal wraps" of S. These moves show promise to serve as a basis for generating random polygons.


Author's pre-print. Final version available at



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.