Document Type

Article

Publication Date

2-2018

Publication Title

Journal of Hydrologic Engineering

Abstract

This paper establishes a novel approach to estimate monthly and annual direct runoff by combining the curve number method of the Natural Resources Conservation Service with an exponential distribution of rainfall depths. The approach was tested against observed rainfall and runoff for 544 watersheds throughout the contiguous United States. For more than half of the watersheds, the performance of the new approach is indistinguishable from the application of the method to daily rainfall when curve numbers are determined via calibration. For all watersheds, the uncertainty introduced by the approximation of the distribution of rainfall depths is far less than the uncertainty associated with the use of tabulated curve numbers based on soil and land-cover characteristics. The new approach does not appreciably increase the overall uncertainty associated with the application of the curve number method in ungauged watersheds. The approach provides reasonable estimates of monthly and annual direct runoff that can inform land-management decisions when daily rainfall records are unavailable.

Volume

23

Issue

2

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Rights

Licensed to Smith College and distributed CC-BY under the Smith College Faculty Open Access Policy.

Comments

Peer reviewed accepted manuscript.

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.