Document Type


Publication Date


Publication Title

Journal of Geophysical Research


Interseismic deformation in Japan results from the combined effects of tectonic processes including rotation of crustal blocks and the earthquake cycle process of elastic strain accumulation about upper plate faults and subduction zone interfaces. We use spherical linear block theory constrained by geodetic observations from densely spaced Global Positioning System (GPS) stations to estimate plate motions, fault slip rates, and spatially variable interplate coupling on the Japan-Kuril, Sagami, and Nankai subduction zones. The reference model developed in this paper consists of 20 blocks, produces a mean residual velocity magnitude of 1.84 mm/yr at 950 stations, and accounts for 96% of the observed interseismic deformation signal. We estimate fault slip rates in excess of 15 mm/yr along the Niigata-Kobe Tectonic Zone and Itoigawa-Shizuoka Tectonic Line through central Japan, confirming their hypothesized roles as major tectonic boundaries. Oblique convergence across the Nankai Trough is partitioned, with 3/4 of the 30 mm/yr of trench-parallel motion accommodated by strike-slip motion on the subduction interface and the remaining 1/4 accommodated by right-lateral slip on the Median Tectonic Line. In contrast, our models suggest negligible slip partitioning in eastern Hokkaido, where oblique slip on the Japan-Kuril subduction interface accommodates all of the trench-parallel component of relative plate motion. Inferred spatial variations in the rake and magnitude of slip deficit on subduction zone interfaces reflect the influences of megathrust geometry and earthquake cycle processes such as enhanced elastic strain accumulation about seismic asperities and coseismic sense fault motion indicative of silent slip events or afterslip following large earthquakes.








Copyright 2010 by the American Geophysical Union.


Archived as published.

Included in

Geology Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.