Document Type

Article

Publication Date

1-3-2017

Publication Title

Quantitative Biology

Abstract

We introduce and study properties of phyllotactic and rhombic tilings on the cylin- der. These are discrete sets of points that generalize cylindrical lattices. Rhombic tilings appear as periodic orbits of a discrete dynamical system S that models plant pattern formation by stacking disks of equal radius on the cylinder. This system has the advantage of allowing several disks at the same level, and thus multi-jugate config- urations. We provide partial results toward proving that the attractor for S is entirely composed of rhombic tilings and is a strongly normally attracting branched manifold and conjecture that this attractor persists topologically in nearby systems. A key tool in understanding the geometry of tilings and the dynamics of S is the concept of pri- mordia front, which is a closed ring of tangent disks around the cylinder. We show how fronts determine the dynamics, including transitions of parastichy numbers, and might explain the Fibonacci number of petals often encountered in compositae.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Rights

Licensed to Smith College and distributed CC-BY under the Smith College Faculty Open Access Policy.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.