Document Type

Article

Publication Date

7-16-2010

Publication Title

ArXiv

Abstract

This paper has three main goals. First, we set up a general framework to address the problem of constructing module bases for the equivariant cohomology of certain subspaces of GKM spaces. To this end we introduce the notion of a GKM-compatible subspace of an ambient GKM space. We also discuss poset-upper-triangularity, a key combinatorial notion in both GKM theory and more generally in localization theory in equivariant cohomology. With a view toward other applications, we present parts of our setup in a general algebraic and combinatorial framework. Second, motivated by our central problem of building module bases, we introduce a combinatorial game which we dub poset pinball and illustrate with several examples. Finally, as first applications, we apply the perspective of GKM-compatible subspaces and poset pinball to construct explicit and computationally convenient module bases for the S1-equivariant cohomology of all Peterson varieties of classical Lie type, and subregular Springer varieties of Lie type A. In addition, in the Springer case we use our module basis to lift the classical Springer representation on the ordinary cohomology of subregular Springer varieties to S1- equivariant cohomology in Lie type A.

Keywords

Algebraic Topology, Algebraic Geometry, Combinatorics, equivariant cohomology and localization, Goresky-Kottwitz-MacPherson theory, graded partially ordered sets, nilpotent Hessenberg varieties, Springer theory

DOI

arXiv:1007.2750

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.