Document Type


Publication Date



We classify knots in a 3-manifold M that are transverse to a nowhere zero vector field V up to the corresponding isotopy relation. When V is the coorienting vector field of a contact structure, these knots are the same as pseudo-Legendrian knots, which were introduced by Benedetti and Petronio. We show that two loose Legendrian knots with the same overtwisted disk in their complement are Legendrian isotopic if and only if they are pseudoLegendrian isotopic.

V -transverse knots are naturally framed. We show that each framed isotopy class corresponds to infinitely many V -transverse isotopy classes whose elements are pairwise distinct up to V -transverse homotopy, provided that one of the following conditions holds: V is a coorienting vector field of a tight contact structure; the manifold M is irreducible and atoroidal; or, the Euler class of a 2-dimensional bundle orthogonal to V is a torsion class.

We also give examples of infinite sets of distinct V -transverse isotopy classes whose representatives are all V -transverse homotopic and framed isotopic.


© the authors


Peer reviewed accepted manuscript.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.