Altered Development of Hippocampus-Dependent Associative Learning Following Early-Life Adversity

Hilary K. Lambert, University of Washington
Matthew Peverill, University of Washington
Kelly A. Sambrook, University of Washington
Maya L. Rosen, University of Washington
Margaret A. Sheridan, The University of North Carolina at Chapel Hill
Katie A. McLaughlin, Harvard University

Peer reviewed accepted manuscript.


Little is known about how childhood adversity influences the development of learning and memory and underlying neural circuits. We examined whether violence exposure in childhood influenced hippocampus-dependent associative learning and whether differences: a) were broad or specific to threat cues, and b) exhibited developmental variation. Children (n = 59; 8–19 years, 24 violence-exposed) completed an associative learning task with angry, happy, and neutral faces paired with objects during fMRI scanning. Outside the scanner, participants completed an associative memory test for face-object pairings. Violence-exposed children exhibited broad associative memory difficulties that became more pronounced with age, along with reduced recruitment of the hippocampus and atypical recruitment of fronto-parietal regions during encoding. Violence-exposed children also showed selective disruption of associative memory for threat cues regardless of age, along with reduced recruitment of the intraparietal sulcus (IPS) during encoding in the presence of threat. Broad associative learning difficulties may be a functional consequence of the toxic effects of early-life stress on hippocampal and fronto-parietal cortical development. Difficulties in the presence of threat cues may result from enhanced threat processing that disrupts encoding and short-term storage of associative information in the IPS. These associative learning difficulties may contribute to poor life outcomes following childhood violence exposure.