Document Type

Article

Publication Date

3-9-2012

Publication Title

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Abstract

The study of frustrated spin systems often requires time-consuming numerical simulations. As the simplest approach, the classical Ising model is often used to investigate the thermodynamic behavior of such systems. Exploiting the small correlation lengths in frustrated Ising systems, we develop a method for obtaining first approximations to the energetic properties of frustrated two-dimensional Ising systems using small networks of less than 30 spins. These small networks allow much faster numerical simulations, and more importantly, analytical evaluations of their properties are numerically tractable. We choose Ising systems on the triangular lattice, the kagome lattice, and the triangular kagome lattice as prototype systems and find small systems that can serve as good approximations to these prototype systems. Through comparisons between the properties of extended models and small systems, we develop a set of criteria for constructing small networks to approximate general infinite two-dimensional frustrated Ising systems. This method of using small networks provides a different and efficient way to obtain a first approximation to the properties of frustrated spin systems.

Volume

85

Issue

3

DOI

10.1103/PhysRevE.85.031107

ISSN

15393755

Rights

©2012 American Physical Society

Comments

Archived as published.

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.