Document Type


Publication Date


Publication Title

WIREs Computational Statistics






Sports analytics—broadly defined as the pursuit of improvement in athletic performance through the analysis of data—has expanded its footprint both in the professional sports industry and in academia over the past 30 years. In this article, we connect four big ideas that are common across multiple sports: the expected value of a game state, win probability, measures of team strength, and the use of sports betting market data. For each, we explore both the shared similarities and individual idiosyncracies of analytical approaches in each sport. While our focus is on the concepts underlying each type of analysis, any implementation necessarily involves statistical methodologies, computational tools, and data sources. Where appropriate, we outline how data, models, tools, and knowledge of the sport combine to generate actionable insights. We also describe opportunities to share analytical work, but omit an in-depth discussion of individual player evaluation as beyond our scope. This article should serve as a useful overview for anyone becoming interested in the study of sports analytics.


Peer reviewed accepted manuscript.

First Page


Digital Object Identifier (DOI)


Licensed to Smith College and distributed CC-BY 4.0 under the Smith College Faculty Open Access Policy.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.