To access this work you must either be on the Smith College campus OR have valid Smith login credentials.

On Campus users: To access this work if you are on campus please Select the Download button.

Off Campus users: To access this work from off campus, please select the Off-Campus button and enter your Smith username and password when prompted.

Non-Smith users: You may request this item through Interlibrary Loan at your own library.

Publication Date


Document Type

Honors Project




Cyclic peptides, Cyclic peptides-Synthesis, Solid-phase synthesis, Dimers, Cyclic peptide synthesis, Solid phase peptide synthesis, Fmoc SPPS


The rapid emergence of bacterial resistance to antibiotics has prompted an increased urgency in health sciences to investigate alternative methods of combating pathogens. A promising alternative can be found in nature as cationic antimicrobial peptides, which all organisms, from plants to humans, are known to produce. Novel antibiotics based on these cationic antimicrobial peptides have recently become a hot topic in research. Synthetically prepared peptides that disrupt ion gradients of the cell membrane through ionophore activity exhibit antimicrobial properties. We sought to synthesize an eight-residue cyclic peptide dimer, which was previously prepared by Ghadiri et al, composed of alternating D-MeN-Ala and L-Phe, and ultimately test it for ionophore activity. The synthesis was achieved through initial synthesis of its linear precursor via Fmoc solid phase peptide synthesis followed by in-solution cyclization. The successful synthesis was confirmed through mass spectrometry analysis.




90 pages : illustrations (some color). Honors Project-Smith College, 2014. Includes bibliographical references (pages 85-90)