Publication Date

2019

Document Type

Honors Project

Degree Name

Bachelor of Arts

Department

Mathematics and Statistics

Advisors

Gwen Spencer

Keywords

Brain networks, Clustering, Brain parcellation, Random walk

Abstract

A functional brain network is a simplified representation of the interactions (temporal corre lations) between regions of interest in the brain. To define a region of interest of a reasonable size, brain parcellation is required to group smaller regions that share certain similarity. We analyzed one piece of resting-state fMRI brain data with graph theoretic-measures and re alized the importance of spatial scale in determining the brain network structure. Temporal scale can also heavily influence the network representation; we propose a modified change point detection method to extract a stationary time series of brain activity. To explore the possibility of applying a popular graph clustering algorithm to our brain data, we study a variety of synthetic networks to further understand the average commute time (ACT). This ACT notion of distance defines the clustering algorithm; we offer tentative explanations for some special properties of ACT distances as well as the performance of the algorithm on resting-state brain data.

Rights

©2019 Tingshan Liu. Access limited to the Smith College community and other researchers while on campus. Smith College community members also may access from off-campus using a Smith College log-in. Other off-campus researchers may request a copy through Interlibrary Loan for personal use.

Language

English

Comments

vi, 100 pages : color illustrations. Includes bibliographical references (pages 94-100)

Share

COinS