Alternative Title

Causality and machine learning

Publication Date

2020

First Advisor

Joseph O'Rourke

Document Type

Honors Project

Degree Name

Bachelor of Arts

Department

Computer Science

Keywords

Explainability, Black box problem, Causality, Machine learning, Pearl's do-calculus, Causal discovery, Causal inference, Practical challenges

Abstract

Machine learning algorithms, which pervade much of society today, currently lack explainability and transparency, resulting in “The ‘Black Box’ Problem.” I will thereby explore this problem by investigating computer scientist Judea Pearl’s the- ory of causality, a theory grounded in causal models, as well as his “do-calculus” for determining the effects of interventions. The goal here is to understand the power, promise, and possible weaknesses in his theory, which has been accepted by many working on the problem of algorithmic explainability. Although he is not the only researcher of causality, I will concentrate on his theory, which is one of the most influential and the furthest developed. I will also briefly draw on philosophical investigations of causality, as it has been a long-studied topic in numerous traditions of thought. Following this contextual study, we will complete an experimental component with various methods of causal discovery and with PyCausalImpact, a Python library for causal inference. It is important to recognize that algorithmic explainability for ML with causal mechanisms is an active and un- resolved area of research. Nonetheless, based on my examination of Pearl’s theory in the context of current literature on ML and the philosophical analyses of causation, I conclude that current approaches to causal inference with respect to ML are very brittle and do not solve “The ’Black Box’ Problem” with great confidence.

Rights

2020 You Jeen Ha. Access limited to the Smith College community and other researchers while on campus. Smith College community members also may access from off-campus using a Smith College log-in. Other off-campus researchers may request a copy through Interlibrary Loan for personal use.

Language

English

Comments

vii, 72 pages : illustrations (some color) Includes bibliographical references (pages 59-72)

Share

COinS