Document Type
Article
Publication Date
11-10-2008
Publication Title
The Astrophysical Journal
Abstract
We probe the geometry of magnetospheric accretion in classical T Tauri stars (CTTSs) by modeling red absorption at He I λ10830 via scattering of the stellar and veiling continua. Under the assumptions that the accretion flow is an azimuthally symmetric dipole and helium is sufficiently optically thick that all incident 1 μm radiation is scattered, we illustrate the sensitivity of He I λ10830 red absorption to both the size of the magnetosphere and the filling factor of the hot accretion shock. We compare model profiles to those observed in 21 CTTSs with subcontinuum redshifted absorption at He I λ10830 and find that about half of the stars have red absorption and 1 μm veilings that are consistent with dipole flows of moderate width with accretion shock filling factors matching the size of the magnetospheric footpoints. However, the remaining 50% of the profiles, with a combination of broad, deep absorption and low 1 μm veiling, require very wide flows where magnetic footpoints are distributed over 10%-20% of the stellar surface but accretion shock filling factors are <1%. We model these profiles by invoking large magnetospheres dilutely filled with accreting gas, leaving the disk over a range of radii in many narrow "streamlets" that fill only a small fraction of the entire infall region. In some cases accreting streamlets need to originate in the disk between several R* and at least the corotation radius. A few stars have such deep absorption at velocities >0.5Vesc that flows near the star with less curvature than a dipole trajectory seem to be required.
Keywords
accretion, accretion disks, planetary systems: protoplanetary disks, scattering, stars: formation, stars: preYmain-sequence
Volume
687
Issue
2
First Page
1117
Last Page
1144
DOI
10.1086/591902
Rights
©2008. The American Astronomical Society. All rights reserved.
Recommended Citation
Fischer, William; Kwan, John; Edwards, Suzan; and Hillenbrand, Lynne A., "Redshifted Absorption at He I λ10830 as a Probe of the Accretion Geometry of T Tauri Stars" (2008). Astronomy: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/ast_facpubs/20
Comments
Archived as published.