Document Type

Conference Proceeding

Publication Date

2020

Publication Title

Proceedings of the First International Workshop on Self-Supervised Learning, PMLR

Abstract

This paper proposes work that applies insights from meaning representation systems for in-depth natural language understanding to representations for self-supervised learning systems, which show promise in developing complex, deeply-nested symbolic structures through self-motivated exploration of their environments. The core of the representation system transforms language inputs into language-free structures that are complex combinations of conceptual primitives, forming a substrate for human-like understanding and common-sense reasoning. We focus on decomposing representations of expectation, intention, planning, and decision-making which are essential to a self-motivated learner. These meaning representations may enhance learning by enabling a rich array of mappings between new experiences and structures stored in short-term and long-term memory. We also argue that learning can be further enhanced when language interaction itself is an integral part of the environment in which the self-supervised learning agent is embedded.

Volume

131

First Page

89

Last Page

98

Rights

Copyright © The authors and PMLR 2020. MLResearchPress

Comments

Archived as published.

http://proceedings.mlr.press/v131/macbeth20a.html

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.