Document Type

Article

Publication Date

11-15-2006

Publication Title

Discrete Applied Mathematics

Abstract

We study connectivity, Hamilton path and Hamilton cycle decomposition, 4-edge and 3-vertex coloring for geometric graphs arising from pseudoline (affine or projective) and pseudocircle (spherical) arrangements. While arrangements as geometric objects are well studied in discrete and computational geometry, their graph theoretical properties seem to have received little attention so far. In this paper we show that they provide well-structured examples of families of planar and projective-planar graphs with very interesting properties. Most prominently, spherical arrangements admit decompositions into two Hamilton cycles; this is a new addition to the relatively few families of 4-regular graphs that are known to have Hamiltonian decompositions. Other classes of arrangements have interesting properties as well: 4-connectivity, 3-vertex coloring or Hamilton paths and cycles. We show a number of negative results as well: there are projective arrangements which cannot be 3-vertex colored. A number of conjectures and open questions accompany our results. © 2006 Elsevier B.V. All rights reserved.

Keywords

Circle and pseudocircle arrangement, Coloring, Connectivity, Hamilton cycle, Hamilton decomposition, Hamilton path, Line and pseudoline arrangement, Planar graph, Projective-planar graph

Volume

154

Issue

17

First Page

2470

Last Page

2483

DOI

10.1016/j.dam.2006.04.006

ISSN

0166218X

Comments

Archived as published.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.