Document Type

Conference Proceeding

Publication Date

1-1-2010

Publication Title

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Abstract

The problem of computing the maximum reach configurations of a 3D revolute-jointed manipulator is a long-standing open problem in robotics. In this paper we present an optimal algorithmic solution for orthogonal polygonal chains. This appears as a special case of a larger family, fully characterized here by a technical condition. Until now, in spite of the practical importance of the problem, only numerical optimization heuristics were available, with no guarantee of obtaining the global maximum. In fact, the problem was not even known to be computationally solvable, and in practice, the numerical heuristics were applicable only to small problem sizes. We present elementary and efficient (mostly linear) algorithms for four fundamental problems: (1) finding the maximum reach value, (2) finding a maximum reach configuration (or enumerating all of them), (3) folding a given chain to a given maximum position, and (4) folding a chain in a way that changes the endpoint distance function monotonically. The algorithms rely on our recent theoretical results characterizing combinatorially the maximum of panel-and-hinge chains. They allow us to reduce the first problem to finding a shortest path between two vertices in an associated simple triangulated polygon, and the last problem to a simple version of the planar carpenter's rule problem. Copyright © by SIAM.

First Page

928

Last Page

937

DOI

10.1137/1.9781611973075.75

Rights

© 2010 SIAM

Comments

Archived as published.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.