Document Type

Conference Proceeding

Publication Date

6-1-2012

Publication Title

Journal of Bioinformatics and Computational Biology

Abstract

Predicting the effect of a single amino acid substitution on the stability of a protein structure is a fundamental task in macromolecular modeling. It has relevance to drug design and understanding of disease-causing protein variants. We present KINARI-Mutagen, a web server for performing in silico mutation experiments on protein structures from the Protein Data Bank. Our rigidity-theoretical approach permits fast evaluation of the effects of mutations that may not be easy to perform in vitro, because it is not always possible to express a protein with a specific amino acid substitution. We use KINARI-Mutagen to identify critical residues, and we show that our predictions correlate with destabilizing mutations to glycine. In two in-depth case studies we show that the mutated residues identified by KINARI-Mutagen as critical correlate with experimental data, and would not have been identified by other methods such as Solvent Accessible Surface Area measurements or residue ranking by contributions to stabilizing interactions. We also generate 48 mutants for 14 proteins, and compare our rigidity-based results against experimental mutation stability data. KINARI-Mutagen is available at http://kinari.cs.umass.edu. © 2012 Imperial College Press.

Keywords

mutations, Protein rigidity, stability prediction

Volume

10

Issue

3

DOI

10.1142/S0219720012420103

ISSN

02197200

Rights

© Imperial College Press

Comments

Archived as published.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.