Document Type
Article
Publication Date
10-1-2010
Publication Title
Computational Geometry: Theory and Applications
Abstract
A single-vertex origami is a piece of paper with straight-line rays called creases emanating from a fold vertex placed in its interior or on its boundary. The Single-Vertex Origami Flattening problem asks whether it is always possible to reconfigure the creased paper from any configuration compatible with the metric, to a flat, non-overlapping position, in such a way that the paper is not torn, stretched and, for rigid origami, not bent anywhere except along the given creases. Streinu and Whiteley showed how to reduce the problem to the carpenter's rule problem for spherical polygons. Using spherical expansive motions, they solved the cases of open < π and closed ≤ 2π spherical polygons. Here, we solve the case of open polygons with total length between [π, 2π), which requires non-expansive motions. Our motion planning algorithm works in a finite number of discrete steps, for which we give precise bounds depending on both the number of links and the angle deficit. © 2010 Elsevier B.V. All rights reserved.
Keywords
Carpenter's rule problem, Expansive motion, Folding, Origami, Spherical linkage
Volume
43
Issue
8
First Page
678
Last Page
687
DOI
10.1016/j.comgeo.2010.04.002
ISSN
09257721
Rights
© 2010 Elsevier B.V.
Recommended Citation
Panina, Gaiane and Streinu, Ileana, "Flattening Single-Vertex Origami: The Non-Expansive Case" (2010). Computer Science: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/298
Comments
Archived as published. Open Access article.