Document Type

Article

Publication Date

10-1-2010

Publication Title

Computational Geometry: Theory and Applications

Abstract

A single-vertex origami is a piece of paper with straight-line rays called creases emanating from a fold vertex placed in its interior or on its boundary. The Single-Vertex Origami Flattening problem asks whether it is always possible to reconfigure the creased paper from any configuration compatible with the metric, to a flat, non-overlapping position, in such a way that the paper is not torn, stretched and, for rigid origami, not bent anywhere except along the given creases. Streinu and Whiteley showed how to reduce the problem to the carpenter's rule problem for spherical polygons. Using spherical expansive motions, they solved the cases of open < π and closed ≤ 2π spherical polygons. Here, we solve the case of open polygons with total length between [π, 2π), which requires non-expansive motions. Our motion planning algorithm works in a finite number of discrete steps, for which we give precise bounds depending on both the number of links and the angle deficit. © 2010 Elsevier B.V. All rights reserved.

Keywords

Carpenter's rule problem, Expansive motion, Folding, Origami, Spherical linkage

Volume

43

Issue

8

First Page

678

Last Page

687

DOI

10.1016/j.comgeo.2010.04.002

ISSN

09257721

Rights

© 2010 Elsevier B.V.

Comments

Archived as published. Open Access article.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.