Document Type

Conference Proceeding

Publication Date

1-1-2013

Publication Title

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Abstract

Task mapping on torus networks has traditionally focused on either reducing the maximum dilation or average number of hops per byte for messages in an application. These metrics make simplified assumptions about the cause of network congestion, and do not provide accurate correlation with execution time. Hence, these metrics cannot be used to reasonably predict or compare application performance for different mappings. In this paper, we attempt to model the performance of an application using communication data, such as the communication graph and network hardware counters. We use supervised learning algorithms, such as randomized decision trees, to correlate performance with prior and new metrics. We propose new hybrid metrics that provide high correlation with application performance, and may be useful for accurate performance prediction. For three different communication patterns and a production application, we demonstrate a very strong correlation between the proposed metrics and the execution time of these codes.

Keywords

Contention, Modeling, Prediction, Supervised learning, Task mapping, Torus networks

DOI

10.1145/2503210.2503263

ISSN

21674329

Rights

Copyright 2013 ACM.

Comments

Archived as published.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.