Document Type
Article
Publication Date
10-20-2004
Abstract
We define a notion for unfolding smooth, ruled surfaces, and prove that every smooth prismatoid (the convex hull of two smooth curves lying in parallel planes), has a nonoverlapping “volcano unfolding.” These unfoldings keep the base intact, unfold the sides outward, splayed around the base, and attach the top to the tip of some side rib. Our result answers a question for smooth prismatoids whose analog for polyhedral prismatoids remains unsolved.
Recommended Citation
Benbernou, Nadia; Cahn, Patricia; and O'Rourke, Joseph, "Unfolding Smooth Prismatoids" (2004). Computer Science: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/46
Comments
Author’s submitted manuscript.