Document Type

Article

Publication Date

12-21-2004

Abstract

We explore optimal circular nonconvex partitions of regular k-gons. The circularity of a polygon is measured by its aspect ratio: the ratio of the radii of the smallest circumscribing circle to the largest inscribed disk. An optimal circular partition minimizes the maximum ratio over all pieces in the partition. We show that the equilateral triangle has an optimal 4-piece nonconvex partition, the square an optimal 13-piece nonconvex partition, and the pentagon has an optimal nonconvex partition with more than 20 thousand pieces. For hexagons and beyond, we provide a general algorithm that approaches optimality, but does not achieve it.

Comments

Author’s submitted manuscript.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.