Document Type
Article
Publication Date
2003
Publication Title
Proceedings of the 15th Canadian Conference on Computational Geometry (CCCG'03)
Abstract
We explore an instance of the question of partitioning a polygon into pieces, each of which is as “circular” as possible, in the sense of having an aspect ratio close to 1. The aspect ratio of a polygon is the ratio of the diameters of the smallest circumscribing circle to the largest inscribed disk. The problem is rich even for partitioning regular polygons into convex pieces, the focus of this paper. We show that the optimal (most circular) partition for an equilateral triangle has an infinite number of pieces, with the lower bound approachable to any accuracy desired by a particular finite partition. For pentagons and all regular k-gons, k > 5, the unpartitioned polygon is already optimal. The square presents an interesting intermediate case. Here the one-piece partition is not optimal, but nor is the trivial lower bound approachable. We narrow the optimal ratio to an aspect-ratio gap of 0.01082 with several somewhat intricate partitions
Recommended Citation
Damian, Mirela and O'Rourke, Joseph, "Partitioning Regular Polygons into Circular Pieces I: Convex Partitions" (2003). Computer Science: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/59
Comments
Author’s submitted manuscript.
Published version is available at http://www.cccg.ca/proceedings/2003/.