Document Type

Article

Publication Date

8-4-2020

Publication Title

Environmental Science and Technology

Abstract

Waterborne viruses are responsible for numerous diseases and are abundant in aquatic systems. Understanding the fate of viruses in natural systems has important implications for human health. This research quantifies the uptake of the bacteriophage T4 and the enteric virus echovirus 11 when exposed to the filter feeders Tetrahymena pyriformis and Daphnia magna, and also examines the potential of viral transfer due to trophic interactions. Experiments co-incubating each species with the viruses over 72-96 h showed up to a 4 log virus removal for T. pyriformis, while direct viral uptake by D. magna was not observed. However, viral uptake by D. magna occurred indirectly by viral transfer from prey to predator, through D. magna feeding on virus-loaded T. pyriformis. This prey-predator interaction resulted in a 1 log additional virus removal compared to removal by T. pyriformis alone. Incomplete viral inactivation by D. magna was observed through recovery of infective viruses from the daphnid tissue. This research furthers our understanding of the impacts of zooplankton filter feeding on viral inactivation and shows the potential for viral transfer through the food chain. The viral-zooplankton interactions observed in these studies indicate that zooplankton may improve water quality through viral uptake or may serve as vectors for infection by accumulating viruses.

Volume

54

Issue

15

First Page

9418

Last Page

9426

DOI

10.1021/acs.est.0c02545

ISSN

0013936X

Comments

Archived as published.

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.