Document Type

Conference Proceeding

Publication Date

12-1-2005

Publication Title

American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC

Abstract

This paper describes a simple two-phase flow dynamic model that predicts the experimentally observed temporal behavior of a proton exchange membrane fuel cell stack and a methodology to experimentally identify tunable physical parameters. The model equations allow temporal calculation of the species concentrations across the gas diffusion layers, the vapor transport across the membrane, the degree of flooding in the electrodes, and then predict the resulting decay in cell voltage over time. A nonlinear optimization technique is used for the identification of two critical model parameters, namely the membrane water vapor diffusion coefficient and the thickness of the liquid water film covering the fuel cell active area. The calibrated model is validated for a 24 cell, 300 cm2 stack with a supply of pressure regulated pure hydrogen.

Volume

74 DSC

Issue

2 PART B

First Page

1177

Last Page

1186

DOI

10.1115/IMECE2005-81484

Rights

Copyright © 2005 by ASME.

Comments

Archived as published.

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.