Document Type

Article

Publication Date

2001

Abstract

A quantitative model of the human middle ear with a tympanic-membrane ~TM! perforation is developed. The model is constrained by several types of acoustic measurements made on human cadaver ears, which indicate that perforation-induced changes in transmission result primarily from changes in driving pressure across the TM and that perforation-induced change in the structure of the TM and its coupling to the ossicles contributes a substantially smaller component. The model represents the effect of a perforation on the pressure difference across the TM by inclusion of a path for sound coupling through the perforation from the ear canal to the middle-ear cavity. The model implies that hearing loss with perforations depends primarily on three quantities: the perforation diameter, sound frequency, and the volume of air in the middle-ear cavity. For the conditions that produce the largest hearing loss ~low frequency and large perforation!, the model yields a simple dependence of loss on frequency, perforation diameter, and middle-ear cavity volume. Predictions from this model may be useful to clinicians in determining whether, in particular cases, hearing losses are explainable by the observed perforations or if additional pathology must be involved.

Volume

110

First Page

1445

Last Page

1452

DOI

10.1121/1.1394196

Rights

© 2001 Acoustical Society of America.

Comments

Archived as published.

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.