Document Type

Article

Publication Date

12-2005

Publication Title

Geology

Abstract

Despite convergence across the strongly coupled seismogenic interface between the South American and Nazca plates, the dominant neotectonic signature in the forearc of northern Chile is arc-normal extension. We have used 1 m resolution IKONOS satellite imagery to map nearly 37,000 cracks over an area of 500 km2 near the Salar Grande (21°S). These features, which are best preserved in a ubiquitous gypcrete surface layer, have both nontectonic and tectonic origins. However, their strong preferred orientation perpendicular to the plate convergence vector suggests that the majority owe their formation to approximate east-west extension associated with plate boundary processes such as interseismic loading, coseismic and postseismic strain, and long-term instability resulting from subduction erosion. Similar structures were formed during or shortly after the 1995 Mw = 8.0 earthquake near the city of Antofagasta, south of Salar Grande, and in conjunction with the 2001 Mw = 8.2–8.4 Arequipa, Peru, event. Cracks such as these may form in other forearcs but remain largely unexposed because of vegetative cover or marked fluvial erosion—factors that are absent in northern Chile as a result of its hyperarid climate.

Volume

33

Issue

12

First Page

973

Last Page

976

DOI

10.1130/G22004.1

Rights

Licensed to Smith College and distributed CC-BY under the Smith College Faculty Open Access Policy.

Comments

Peer reviewed accepted manuscript.

Included in

Geology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.