Document Type

Article

Publication Date

2-1-2010

Publication Title

Palaios

Abstract

Calcareous skeletons evolved as part of the greater EdiacaranCambrian diversification of marine animals. Skeletons did not become permanent, globally important sources of carbonate sediment, however, until the Ordovician radiation. Representative carbonate facies in a Series 3 (510501 Ma) Cambrian to Tremadocian succession from western Newfoundland, Canada, and Ordovician successions from the Ibex area, Utah, USA, show that, on average, Cambrian and Tremadocian carbonates contain much less skeletal material than do post-Tremadocian sediments. Petrographic point counts of skeletal abundance within facies and proportional facies abundance in measured sections suggest that later Cambrian successions contain on average volume, whereas the skeletal content of post-Tremadocian Ordovician sections is closer to ∼15. A compilation of carbonate stratigraphic sections from across Laurentia confirms that post-Tremadocian increase in skeletal content is a general pattern and not unique to the two basins studied. The long interval (∼40 myr) between the initial Cambrian appearance of carbonate skeletons and the subsequent Ordovician diversification of heavily skeletonized organisms provides an important perspective on the Ordovician radiation. Geochemical data increasingly support the hypothesis that later Cambrian oceans were warm and, in subsurface water masses, commonly dysoxic to anoxic. We suggest that surface waters in such oceans would have been characterized by relatively low saturation states for calcite and aragonite. Mid-Ordovician cooling would have raised oxygen concentrations in subsurface water masses, establishing more highly oversaturated surface waters. If correct, these links could provide a proximal trigger for the renewed radiation of heavily skeletonized invertebrates and algae.

Volume

25

Issue

2

First Page

73

Last Page

84

DOI

10.2110/palo.2009.p09-101r

ISSN

08831351

Rights

© 2010 SEPM (Society for Sedimentary Geology).

Comments

Archived as published. Open access article

Included in

Geology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.