Document Type

Policy Paper

Publication Date

5-1-2020

Publication Title

Policy Studies Journal

Abstract

Despite its rich tradition, there are key limitations to researchers' ability to make generalizable inferences about state policy innovation and diffusion. This paper introduces new data and methods to move from empirical analyses of single policies to the analysis of comprehensive populations of policies and rigorously inferred diffusion networks. We have gathered policy adoption data appropriate for estimating policy innovativeness and tracing diffusion ties in a targeted manner (e.g., by policy domain, time period, or policy type) and extended the development of methods necessary to accurately and efficiently infer those ties. Our state policy innovation and diffusion (SPID) database includes 728 different policies coded by topic area. We provide an overview of this new dataset and illustrate two key uses: (i) static and dynamic innovativeness measures and (ii) latent diffusion networks that capture common pathways of diffusion between states across policies. The scope of the data allows us to compare patterns in both across policy topic areas. We conclude that these new resources will enable researchers to empirically investigate classes of questions that were difficult or impossible to study previously, but whose roots go back to the origins of the political science policy innovation and diffusion literature.

Keywords

latent networks, policy diffusion, policy innovation

Volume

48

Issue

2

First Page

517

Last Page

545

DOI

10.1111/psj.12357

ISSN

0190292X

Comments

Archived as published. Open access article.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.