Document Type

Article

Publication Date

9-16-2004

Publication Title

Electronic Journal of Combinatorics

Abstract

A graph G is distinguished if its vertices are labelled by a map φ: V(G) → {1,2,..., k} so that no non-trivial graph automorphism preserves φ. The distinguishing number of G is the minimum number k necessary for φ to distinguish the graph. It measures the symmetry of the graph. We extend these definitions to an arbitrary group action of Γ on a set X. A labelling φ: X → {1, 2,..., k} is distinguishing if no element of Γ preserves Γ except those which fix each element of X. The distinguishing number of the group action on X is the minimum k needed for φ to distinguish the group action. We show that distinguishing group actions is a more general problem than distinguishing graphs. We completely characterize actions of (S)n (on a set with distinguishing number)n, answering an open question of Albertson and Collins.

Volume

11

Issue

1 R

First Page

1

Last Page

13

DOI

10.37236/1816

ISSN

10778926

Comments

Peer reviewed accepted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.