Document Type

Article

Publication Date

11-1-2021

Publication Title

Journal of Computational Physics

Abstract

In this paper we use neural networks to learn governing equations from data. Specifically we reconstruct the right-hand side of a system of ODEs x˙(t)=f(t,x(t)) directly from observed uniformly time-sampled data using a neural network. In contrast with other neural network-based approaches to this problem, we add a Lipschitz regularization term to our loss function. In the synthetic examples we observed empirically that this regularization results in a smoother approximating function and better generalization properties when compared with non-regularized models, both on trajectory and non-trajectory data, especially in presence of noise. In contrast with sparse regression approaches, since neural networks are universal approximators, we do not need any prior knowledge on the ODE system. Since the model is applied component wise, it can handle systems of any dimension, making it usable for real-world data.

Keywords

Deep learning, Generalization gap, Machine learning, Ordinary differential equations, Regularized network, System identification

Volume

444

DOI

10.1016/j.jcp.2021.110549

ISSN

00219991

Comments

Peer reviewed accepted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.