Document Type

Article

Publication Date

12-1-2009

Publication Title

Indiana University Mathematics Journal

Abstract

Minimal surfaces in the sub-Riemannian Heisenberg group can be constructed by means of a Riemannian approximation scheme, as limit of Riemannian minimal surfaces. We study the regularity of Lipschitz, non-characteristic minimal surfaces which arise as such limits. Our main results are apriori estimates on the solutions of the approximating Riemannian PDE and the ensuing C∞ regularity of the sub-Riemannian minimal surface along its Legendrian foliation.

Keywords

Minimal surfaces, Sub-Riemannian geometry, Viscosity solutions

Volume

58

Issue

5

First Page

2115

Last Page

2160

DOI

10.1512/iumj.2009.58.3673

ISSN

00222518

Comments

Peer reviewed accepted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.