Document Type

Article

Publication Date

6-1-2019

Publication Title

Journal of Non-Newtonian Fluid Mechanics

Abstract

The Immersed Boundary (IB) method has been widely used to solve fluid-structure interaction problems, including those where the structure interacts with polymeric fluids. In this paper, we examine the convergence of one such scheme for a well known two-dimensional benchmark flow for the Oldroyd-B constitutive model, and we show that the traditional IB-based scheme fails to adequately capture the polymeric stress near to embedded boundaries. We analyze the reason for such failure, and we argue that this feature is not specific to the case study chosen, but a general feature of such methods due to lack of convergence in velocity gradients near interfaces. In order to remedy this problem, we build a different scheme for the Oldroyd-B system using the Immersed Boundary Smooth Extension (IBSE) scheme, which provides convergent viscous stresses near boundaries. We show that this modified scheme produces convergent polymeric stresses through the whole domain, including on embedded boundaries, and produces solutions in good agreement with known benchmarks.

Keywords

Complex fluids, Complex geometry, High-order, Immersed boundary, Oldroyd-B, Partial differential equations

Volume

268

First Page

56

Last Page

65

DOI

10.1016/j.jnnfm.2019.05.001

ISSN

03770257

Comments

Peer reviewed accepted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.