Document Type

Article

Publication Date

1-1-1999

Publication Title

Ergodic Theory and Dynamical Systems

Abstract

This paper gives two results that show that the dynamics of a time-periodic Lagrangian system on a hyperbolic manifold are at least as complicated as the geodesic flow of a hyperbolic metric. Given a hyperbolic geodesic in the Poincaré ball, Theorem A asserts that there are minimizers of the lift of the Lagrangian system that are a bounded distance away and have a variety of approximate speeds. Theorem B gives the existence of a collection of compact invariant sets of the Euler-Lagrange flow that are semiconjugate to the geodesic flow of a hyperbolic metric. These results can be viewed as a generalization of the Aubry-Mather theory of twist maps and the Hedlund-Morse-Gromov theory of minimal geodesies on closed surfaces and hyperbolic manifolds.

Volume

19

Issue

5

First Page

1157

Last Page

1173

DOI

10.1017/S0143385799133893

ISSN

01433857

Comments

Peer reviewed accepted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.