Document Type

Article

Publication Date

1-1-1994

Publication Title

Transactions of the American Mathematical Society

Abstract

We prove the existence of at least cl(Af) periodic orbits for certain time-dependent Hamiltonian systems on the cotangent bundle of an arbitrary compact manifold M. These Hamiltonians are not necessarily convex but they satisfy a certain boundary condition given by a Riemannian metric on M. We discretize the variational problem by decomposing the time-1 map into a product of "symplectic twist maps". A second theorem deals with homotopically non-trivial orbits of negative curvature.

Volume

343

Issue

1

First Page

327

Last Page

347

DOI

10.1090/S0002-9947-1994-1232186-5

ISSN

00029947

Rights

© the authors

Comments

Author’s submitted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.