Document Type

Article

Publication Date

1-1-2017

Publication Title

Journal of Symplectic Geometry

Abstract

A VB-groupoid is a Lie groupoid equipped with a compatible linear structure. In this paper, we describe a correspondence, up to isomorphism, between VB-groupoids and 2-term representations up to homotopy of Lie groupoids. Under this correspondence, the tangent bundle of a Lie groupoid G corresponds to the “adjoint representation” of G. The value of this point of view is that the tangent bundle is canonical, whereas the adjoint representation is not. We define a cochain complex that is canonically associated to any VB-groupoid. The cohomology of this complex is isomorphic to the groupoid cohomology with values in the corresponding representations up to homotopy. When applied to the tangent bundle of a Lie groupoid, this construction produces a canonical complex that computes the cohomology with values in the adjoint representation. Finally, we give a classification of regular 2-term representations up to homotopy. By considering the adjoint representation, we find a new cohomological invariant associated to regular Lie groupoids.

Volume

15

Issue

3

First Page

741

Last Page

783

DOI

10.4310/JSG.2017.v15.n3.a5

ISSN

15275256

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Rights

Licensed to Smith College and distributed CC-BY under the Smith College Faculty Open Access Policy

Comments

Peer reviewed accepted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.