Document Type
Article
Publication Date
4-1-2011
Publication Title
Journal of Biological Chemistry
Abstract
Tubulin post-translational modifications generate microtubule heterogeneity and modulate microtubule function, and are catalyzed by tubulin tyrosine ligase-like (TTLL) proteins. Using antibodies specific to monoglycylated, polyglycylated, and glutamylated tubulin in whole mount immunostaining of zebrafish embryos, we observed distinct, tissue-specific patterns of tubulin modifications. Tubulin modification patterns in cilia correlated with the expression of ttll3 and ttll6 in ciliated cells. Expression screening of all zebrafish tubulin tyrosine ligase-like genes revealed additional tissue-specific expression of ttll1 in brain neurons, ttll4 in muscle, and ttll7 in otic placodes. Knockdown of ttll3 eliminated cilia tubulin glycylation but had surprisingly mild effects on cilia structure and motility. Similarly, knockdown of ttll6 strongly reduced cilia tubulin glutamylation but only partially affected cilia structure and motility. Combined loss of function of ttll3 and ttll6 caused near complete loss of cilia motility and induced a variety of axonemal ultra-structural defects similar to defects previously observed in zebrafish fleer mutants, which were shown to lack tubulin glutamylation. Consistently, we find that fleer mutants also lack tubulin glycylation. These results indicate that tubulin glycylation and glutamylation have overlapping functions in maintaining cilia structure and motility and that the fleer/ dyf-1 TPR protein is required for both types of tubulin post-translational modification.
Volume
286
Issue
13
First Page
11685
Last Page
11695
DOI
10.1074/jbc.M110.209817
ISSN
00219258
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rights
© 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Recommended Citation
Pathak, Narendra; Austin, Christina A.; and Drummond, Iain A., "Tubulin Tyrosine Ligase-Like Genes ttll3 and ttll6 Maintain Zebrafish Cilia Structure and Motility" (2011). Neuroscience: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/nsc_facpubs/36
Comments
Archived as published. Open access article.