Document Type

Article

Publication Date

8-1-2020

Publication Title

Physical Review A

Abstract

We characterize the high-temperature thermodynamics of rotating bosons and fermions in two-dimensional (2D) and three-dimensional (3D) isotropic harmonic trapping potentials. We begin by calculating analytically the conventional virial coefficients bn for all n in the noninteracting case, as functions of the trapping and rotational frequencies. We also report on the virial coefficients for the angular momentum and associated moment of inertia. Using the bn coefficients, we analyze the deconfined limit (in which the angular frequency matches the trapping frequency) and derive explicitly the limiting form of the partition function, showing from the thermodynamic standpoint how both the 2D and 3D cases become effectively homogeneous 2D systems. To tackle the virial coefficients in the presence of weak interactions, we implement a coarse temporal lattice approximation and obtain virial coefficients up to third order.

Volume

102

Issue

2

DOI

10.1103/PhysRevA.102.023309

ISSN

24699926

Rights

©2020 American Physical Society

Comments

Archived as published.

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.